

Chronic Toxicity Test Results for the Carlsbad Desalination Plant

❖ Sample ID: M-001 (Weekly) Sample Collection Date: December 19, 2017

Prepared for: IDE AMERICAS, Inc.

4590 Carlsbad Boulevard Carlsbad, CA 92008

Prepared by: Nautilus Environmental

Submitted: January 2, 2018

Data Quality Assurance:

- Nautilus Environmental is accredited in accordance with NELAP by the State of Oregon Environmental Laboratory Accreditation Program (Certificate No. 4053). It is also certified by the State of California Department of Health Services Environmental Laboratory Accreditation Program (Certificate No. 1802) and the State of Washington Department of Ecology (Lab ID C552).
- All data have been reviewed and verified.
- All test results have met minimum test acceptability criteria under their respective EPA protocols, unless otherwise noted in this report.
- o All test results have met internal Quality Assurance Program requirements.

California
4340 Vandever Avenue
San Diago, California 921

San Diego, California 92120 858.587.7333 fax: 858.587.3961 Results verified by: ______ Advienne libor

EXECUTIVE SUMMARY

CHRONIC TOXICITY TESTING

CARLSBAD DESALINATION PLANT — DECEMBER 2017 ORDER NO. R9-2006-0065; NPDES NO. CA0109223

Sampling Date: December 19, 2017

<u>Test Date:</u> December 20, 2017

Sample ID: M-001

M-001

Effluent Limitation: 16.5 TU_c

Results Summary:

Bioassay Type:	M-001 Efflu Resu		Effluent Limitation Met? (Yes/No)	
	NOEC	TUc	NI-	
Echinoderm Fertilization	5	20	No	

TOXICITY SUMMARY REPORT

Test IDs: 1712-S096 & S097

Client: IDE Americas, Inc.

Sample Collection Date: December 19, 2017

INTRODUCTION

A 24-hour composite discharge sample was collected in December 2017 for the Poseidon Resources (Channelside) LLC, Carlsbad Desalination Project (CDP) for weekly accelerated toxicity monitoring purposes. Due to effects observed in a sample collected and tested for monthly monitoring purposes on May 04, 2017 from the CDP discharge monitoring point (M-001), accelerated monitoring was triggered according to the permit that was adopted in 2006 (Order No. R9-2006-0065). Bioassay testing was conducted at the Nautilus Environmental (Nautilus) laboratory in San Diego, California on December 20, 2017 using the purple urchin (*Strongylocentrotus purpuratus*) chronic fertilization test.

MATERIALS AND METHODS

Sample collection was performed by IDE Americas, Inc. (IDE) personnel, and the sample was delivered by courier to Nautilus. Following arrival at Nautilus, an aliquot of the sample was poured off and the following water quality parameters were measured: pH, dissolved oxygen (DO), temperature, salinity, alkalinity, and total chlorine. The sample was stored at 4° C in the dark until used for testing. A summary of the sample collection and receipt information is provided in Table 1, and water quality parameters measured upon receipt at Nautilus are presented in Table 2. Testing was conducted in accordance with the protocol described in USEPA 1995, and the methods are summarized in Table 3.

Table 1. Sample Information

Client/Project: IDE Americas, Inc./ Carlsbad Desalination Plant

Monitoring Period: December 2017

Sample ID, Material: M-001, desalination plant brine effluent

Sample Collection Date, Time: 12/19/17, 8:00

Sample Receipt Date, Time: 12/19/17, 13:45

Sampling Method: 24-hour Composite

Table 2. Water Quality Measurements upon Sample Receipt

Sample ID	рН	DO (mg/L)	Temp (°C)	Salinity (ppt)	Alkalinity (mg/L as CaCO₃)	Total Chlorine (mg/L)
M-001	7.83	7.4	2.7	64.5	208	0.02

TOXICITY SUMMARY REPORT

Test IDs: 1712-S096 & S097

Client: IDE Americas, Inc.
Sample Collection Date: December 19, 2017

Table 3. Echinoderm Fertilization Chronic Bioassay Specifications

Test Period: 12/20/17, 15:35 through 16:15

Test Organism: Strongylocentrotus purpuratus (purple sea urchin)

Test Organism Source: Field-collected off Point Loma in San Diego, CA

Lab Control/Dilution Water: Natural seawater (source: Scripps Institution of Oceanography (SIO)

inlet), 34±2 parts per thousand (ppt); 20-µm filtered

Additional Control: High Salinity Control (HSC) – seawater with Nautilus hypersaline brine

added to match the salinity of the 15 percent M-001 effluent concentration; tested to evaluate potential adverse effects due to

elevated salinity alone

Test Concentrations: 2.5, 5.0, 6.06, 10, and 15 percent unadjusted M-001 sample; lab

control. The same dilution series was also tested with the sample after adjustment to 40 ppt per request from Poseidon. This adjustment was performed to replicate sample adjustment allowable in the permit for acute testing to reflect maximum salinity concentrations in the effluent prior to discharge to the ocean (i.e., the maximum daily average salinity concentration limit for the combined Encina Power Station Discharge and CDP discharges).

Number of Replicates, Organisms

per Replicate:

5 replicates, 2000 eggs per replicate. Sperm to egg ratio determined

before each test with a preliminary rangefinding test.

Test Chamber Type, Volume per

Replicate:

Glass scintillation vial containing 10 mL of test solution

Protocol Used: EPA/600/R-95/136, 1995 West Coast Marine Chronic

Test Type: Fertilization; 20-min sperm exposure to effluent followed by a 20-min

egg fertilization period

Acceptability Criteria: Mean fertilization ≥70% in the control, and percent minimum

significant difference (PMSD) value <25

Reference Toxicant Testing: Copper chloride

Statistical Analysis Software: CETIS™, version 1.8.7.20

Statistical analyses were conducted using EPA flowchart specifications as outlined in the test guidance manual (USEPA 1995). Organism performance in each sample dilution series was compared to that observed in the laboratory control. Results were used to calculate the No Observed Effect Concentration (NOEC) and chronic toxic unit (TU_c) values.

In addition to EPA flowchart statistical methods, the results were also analyzed using the USEPA's Test of Significant Toxicity (TST) approach specified in National Pollutant Discharge Elimination System Test of Significant Toxicity Implementation Document (USEPA 2010). Notably, the California State Water Resources Control Board (SWRCB) published a Draft Policy for Toxicity Assessment and Control (SWRCB, 2012), which includes the TST as an alternative method to evaluate toxicity data. This approach applies a modified t-test that takes into account both the statistical power of the test and the magnitude of biological effects in determining the presence of a response. For this sample, the in-stream waste

Client: IDE Americas, Inc. Sample Collection Date: December 19, 2017

concentration (IWC) is 6.06 percent unadjusted effluent, and results are reported as "Pass" if a sample is considered non-toxic according to the TST calculation, or "Fail" if considered toxic according to the TST. As the TST statistical analysis is not in the 2006 CDP permit, the TST results are included for comparison purposes only.

RESULTS

There was a significant decrease in the fertilization rate in the 6.06, 10, and 15 percent concentrations detected in the unadjusted M-001 effluent sample relative to the lab control using the EPA 1995 flowchart statistics. The NOEC is reported as 5 percent effluent and a TU_c equal to 20, which is above the maximum permit effluent limitation of 16.5. A significant decrease was observed at 10 percent effluent concentration tested in the M-001 unadjusted sample using the TST statistical analysis. The high salinity control resulted in 92.8 percent mean fertilization indicating that reduced fertilization in the unadjusted sample was not likely due to elevated salinity.

There was no significant decrease in the fertilization rate at any percent concentration in the 40 ppt adjusted M-001 sample relative to the lab control using the EPA 1995 flowchart statistics. No significant decrease was observed at any effluent concentration in the M-001 40 ppt adjusted sample using the TST statistical analysis.

Statistical results for urchin fertilization toxicity tests are summarized in Table 4, and detailed test results are summarized in Table 5. Raw test data and full statistical analyses can be found in Appendix A. Sample receipt information and a copy of the chain-of-custody form are in Appendices B and C, respectively.

Table 4. Statistical Results for M-001 Purple Urchin Fertilization Testing

Sample ID	NOEC (% sample)	LOEC (% sample)	EC ₅₀ (% sample)	TU _c value (toxic units)	TST Result (Pass/Fail)	Percent Effect at IWC
M-001 (unadjusted)	5	6.06	>15	20	Pass	13
M-001 (40 ppt adjusted)	15	>15	>15	<6.67	Pass	-3.4

NOEC = No Observed Effect Concentration

LOEC = Lowest Observed Effect Concentration

EC₅₀ = Concentration expected to cause an adverse effect to 50 percent of the test organisms

TU_c = Chronic Toxic Unit: 100÷NOEC

TST: Pass = sample is non-toxic at the 6.06% IWC according to the TST calculation; Fail = sample is toxic at the 6.06% IWC according to the TST calculation. The TST analysis is not in the existing CDP permit; TST analysis is included here for comparison purposes only.

Percent effect (PE) from control is calculated as: PE= ((mean response in control-mean response in the IWC)/mean response in control) *100. A negative PE results when organism performance in the sample is greater than that in the control.

Table 5. Detailed Results of Purple Urchin Fertilization Testing for the M-001 Sample

Test Concentration	M-001 L	Inadjusted Sample	M-001 40 ppt Adjusted ^a			
(% Sample)	Salinity (ppt)	Mean Percent Fertilization	Salinity (ppt)	Mean Percent Fertilization		
Lab Control	33.8	86.6	33.7	88.8		
High Salinity Control	38.8	92.8				
2.5	34.6	89.2	34.1	91.6		
5.0	35.5	83.0	34.2	89.6		
6.06	35.7	75.2*	34.3	91.8		
10	36.9	60.0*	34.6	91.0		
15	38.9	68.0*	35.0	94.2		

^{*} An asterisk indicates a statistically significant difference when compared to the lab control using EPA 1995 flowchart statistical methods

QUALITY ASSURANCE

The sample was received on the day of collection and was within the appropriate temperature range. The test was initiated within the 36-hour holding time. The laboratory controls met the minimum acceptability criteria as set by USEPA. The PMSD values, which are a measure of test variability, were within the acceptable range. Therefore, all test results were deemed valid for reporting purposes.

Statistical analyses followed USEPA flowchart selections and dose-response relationships were reviewed to evaluate reliability of the results. Additionally, appropriate threshold effect and alpha levels were used for statistical analyses according to the TST Implementation Document guidelines (USEPA 2010).

Results for the concurrent reference toxicant test used to monitor laboratory performance and test organism sensitivity are summarized in Table 6 and presented in full in Appendix D. The reference toxicant test met all test acceptability criteria. The median effect concentration (EC_{50}) value was within two standard deviations (SD) of the historical mean, indicating typical test organism sensitivity to copper. A list of qualifier codes used on bench datasheets can be found in Appendix E.

Table 6. Urchin Fertilization Reference Toxicant Test Results

Test Date	EC ₅₀ (µg/L Copper)	Historical Mean EC ₅₀ ±2 SD (µg/L Copper)	CV (%)
12/20/17	42.0	46.6 ± 32.9	35.3

 EC_{50} = Concentration expected to cause an adverse effect to 50 percent of the test organisms Historical Mean $EC_{50} \pm 2$ SD = Mean of historical test results plus or minus two standard deviations CV = Coefficient of Variation

^a For comparison to the M-001 unadjusted sample, the M-001 sample was adjusted with seawater to 40 ppt prior to preparing test concentrations.

TOXICITY SUMMARY REPORT

Test IDs: 1712-S096 & S097

Client: IDE Americas, Inc.

Sample Collection Date: December 19, 2017

REFERENCES

California State Water Resources Control Board (SWRCB) 2012. Draft Policy for Toxicity Assessment and Control. June 2012. Sacramento, CA.

- Phillips, B.M., B.S. Anderson, K. Siegler, J.P. Voorhees, S. Katz, L. Jennings and R.S. Tjeerdema. 2012. Hyper-Saline Toxicity Thresholds for Nine California Ocean Plan Toxicity Test Protocols. Final Report. University of California, Davis, Department of Environmental Toxicology at Granite Canyon.
- Tidepool Scientific Software. 2000-2013. CETIS™ Comprehensive Environmental Toxicity Information System Software, Version 1.8.7.20
- USEPA. 1995. Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms. EPA/600/R-95/136.
- USEPA. 2000. Understanding and Accounting for Method Variability in Whole Effluent Toxicity Applications Under the National Pollutant Discharge Elimination System. United States Environmental Protection Agency Office of Wastewater Management (EPA-833-R-00-003).
- USEPA. 2010. National Pollutant Discharge Elimination System Test of Significant Toxicity Implementation Document. EPA/833/R-10/003. June 2010.

Appendix A

Test Data and Statistical Analyses

CETIS Summary Report

Report Date:

28 Dec-17 10:58 (p 1 of 1)

Test Code:

1712-S096 | 07-3883-8140

								Test Code:		17	12-8096 0	7-3883-814
Echinoid Spe	erm Cell Fertiliza	tion Tes	t 15C							Nautilu	s Environn	nental (CA
Batch ID: Start Date: Ending Date: Duration:	16-3383-7758 20 Dec-17 15:3 20 Dec-17 16:1 40m	5 F	est Type: Protocol: Species: Source:	Fertilization EPA/600/R-95/ Strongylocentry Pt. Loma	` ,	tus		Analyst: Diluent: Brine: Age:		oratory Sea Applicable	water	
•	07-8752-3429 19 Dec-17 08:0 : 19 Dec-17 13:4 32h (2.7°C)	00 N 5 S	ode: laterial: ource: tation:	17-1301 Facility Effluen IDE Americas, M-001 (Unadju	Inc.	eekl		Client: Project:	IDE Carls	sbad Desal	Plant	
Comparison S	Summary											
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU	Meth	od			
21-4656-0576	Fertilization Rat	te	5	6.06	5.505	9.47%	20	Dunn	ett Mı	ultiple Com	parison Tes	st
Point Estimat	e Summary											
Analysis ID	Endpoint		Level	%	95% LCL	95% UCL	TU	Meth	od			
16-7858-3179	Fertilization Rat	te	EC25 EC50	9.323 >15	7.581 N/A	N/A N/A	10.73 <6.66		r Inte	rpolation (I	CPIN)	
Test Acceptat	oility											
Analysis ID	Endpoint		Attrib	ute	Test Stat	TAC Limi	its	Overi	ар	Decision		
16-7858-3179	Fertilization Rat	e	Contro	ol Resp	0.866	0.7 - NL	,	Yes		Passes A	cceptability	Criteria
21-4656-0576	Fertilization Rat	e	Contro	ol Resp	0.866	0.7 - NL		Yes		Passes A	cceptability	Criteria
21-4656-0576	Fertilization Rat	e	PMSD		0.0947	NL - 0.25		No		Passes A	cceptability	Criteria
Fertilization R	tate Summary						·····					
	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std E	rr	Std Dev	CV%	%Effect
	High Salinity Co	5	0.928	0.9011	0.9549	0.9	0.96	0.009	695	0.02168	2.34%	0.0%
0	Lab Control	5	0.866	0.819	0.913	8.0	0.89	0.016	91	0.03782	4.37%	6.68%
2.5		5	0.892	0.8514	0.9326	0.84	0.92	0.014	63	0.03271	3.67%	3.88%
5		5	0.83	0.7505	0.9095	0.76	0.91	0.028	64	0.06403	7.72%	10.56%
6.06		5	0.752	0.7078	0.7962	0.7	8.0	0.015	94	0.03564	4.74%	18.97%
10		5	0.6	0.4626	0.7374	0.44	0.71	0.049		0.1107	18.45%	35.34%
15		5	0.68	0.5958	0.7642	0.6	0.76	0.030	33	0.06782	9.97%	26.72%
Fertilization R	ate Detail											
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5						
0	High Salinity Co	0.92	0.93	0.93	0.9	0.96	and the last section of					
0	Lab Control	0.88	0.89	8.0	0.87	0.89						
2.5		0.84	0.91	0.91	0.92	0.88						
5		0.88	0.76	0.82	0.78	0.91						
6.06		0.75	0.7	0.75	0.8	0.76						
10		0.57	0.71	0.58	0.7	0.44						
15		0.72	0.6	0.7	0.76	0.62						
		V. /	0.0	0.1	0.70	0.02						

Report Date:

28 Dec-17 10:58 (p 1 of 2)

Report Date.	20 Dec-17 10.36 (p 1 0)
Test Code:	1712-S096 07-3883-814

							1631	. Coue.	17.1	2-3090 0	7-3003-014	
Echinoid Sp	oerm Cell Fertiliz	ation Test	: 15C						Nautilu	s Environr	nental (CA	
Analysis ID: Analyzed:	: 21-4656-0576 28 Dec-17 10		•	rtilization Ra rametric-Coi		itments		IS Version: cial Results				
Data Transfe	orm	Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU	
Angular (Cor	rrected)	NA	C > T	NA	NA		9.47%	5	6.06	5.505	20	
Dunnett Mu	ltiple Compariso	n Test										
Control	vs C-%		Test Stat	Critical	MSD DE	P-Value	P-Type	Decision	α:5%)			
Lab Control	2.5		-0.8561	2.362	0.111 8	0.9753	CDF		ficant Effect			
	5		0.9983	2.362	0.111 8	0.4207	CDF	J	ficant Effect			
	6.06*		3.152	2.362	0.111 8	0.0090	CDF	Significan				
	10*		6.609	2.362	0.111 8	<0.0001	CDF	Significan				
	15*		4.838	2.362	0.111 8	0.0001	CDF	Significan				
ANOVA Tob	La					0.0001		Olgrinicari	LICCI			
ANOVA Table Source	ie Sum Squ	laraa	Maan Cau		DE.	E 04-4	D.V. I		30 (1)			
			Mean Squ		DF	F Stat	P-Value	Decision(·		
Between	0.468883	3	0.0937766		5	17.01	<0.0001	Significan	t Effect			
Error	0.13228	0.0055116	565	24								
Total	0.601163	3			29							
Distribution												
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)				
Variances	Bartlett B	Equality of	Variance	5.327	15.09	0.3773	Equal Var	iances				
Distribution	Shapiro-	Wilk W No	rmality	0.9754	0.9031	0.6958	Normal Di	Normal Distribution				
Fertilization	Rate Summary											
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect	
0	Lab Control	5	0.866	0.819	0.913	0.88	0.8	0.89	0.01691	4.37%	0.0%	
2.5		5	0.892	0.8514	0.9326	0.91	0.84	0.92	0.01463	3.67%	-3.0%	
5		5	0.83	0.7505	0.9095	0.82	0.76	0.91	0.02864	7.72%	4.16%	
6.06		5	0.752	0.7078	0.7962	0.75	0.7	8.0	0.01594	4.74%	13.16%	
10		5	0.6	0.4626	0.7374	0.58	0.44	0.71	0.0495	18.45%	30.72%	
15		5	0.68	0.5958	0.7642	0.7	0.6	0.76	0.03033	9.97%	21.48%	
***************************************		J	0.00									
Angular (Cor	rrected) Transfor											
Angular (Cor	rrected) Transfor Control Type	med Sum Count		95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect	
	•	med Sum	mary		95% UCL 1.264		Min 1.107	Max 1.233	Std Err 0.0235	CV% 4.39%		
C-%	Control Type	med Sum Count	mary Mean	95% LCL		Median				4.39%	0.0%	
C-% 0 2.5	Control Type	med Sum Count 5	mary Mean 1.198	95% LCL 1.133	1.264	Median	1.107	1.233	0.0235 0.02273	4.39% 4.1%	0.0% -3.35%	
C-% 0 2.5 5	Control Type	med Sum Count 5	mary Mean 1.198 1.239	95% LCL 1.133 1.175	1.264 1.302	Median 1.217 1.266	1.107 1.159	1.233 1.284 1.266	0.0235 0.02273 0.03945	4.39% 4.1% 7.66%	0.0% -3.35% 3.91%	
C-% 0 2.5	Control Type	med Sum Count 5 5 5	Mean 1.198 1.239 1.151	95% LCL 1.133 1.175 1.042	1.264 1.302 1.261	Median 1.217 1.266 1.133	1.107 1.159 1.059	1.233 1.284	0.0235 0.02273	4.39% 4.1%	0.0% -3.35%	

Analyst: QA: EC 1/2/18

Report Date: Test Code:

Rankits

28 Dec-17 10:58 (p 2 of 2) 1712-S096 | 07-3883-8140

Echinoid Sperm Cell Fertilization Test 15C Nautilus Environmental (CA) Analysis ID: 21-4656-0576 Endpoint: Fertilization Rate **CETIS Version:** CETISv1.8.7 28 Dec-17 10:57 Analyzed: Analysis: Parametric-Control vs Treatments Official Results: Yes Graphics 1.0 F 0.15 0.10 8.0 Fertilization Rate 0.7 0.05 0.5 0.05 0.4 0.3 -0.10 0.2 0.1 0.0 0 LC 6.06 10 15 -2.5 -2.0 -1.5 -1,0 -0.5 0.0 C-%

Report Date: Test Code:

28 Dec-17 10:58 (p 1 of 1)

1712-S096 | 07-3883-8140

Echinoid Sperm Cell Fertilization Test 15C

Nautilus Environmental (CA)

Analysis ID: 16-7858-3179 Analyzed:

28 Dec-17 10:57

Endpoint: Fertilization Rate

Analysis: Linear Interpolation (ICPIN)

CETIS Version: Official Results:

CETISv1.8.7

Yes

Linear Interpol	lation Options				
X Transform	Y Transform	Seed	Resamples	Exp 95% CL	Method
Linear	Linear	975989	1000	Yes	Two-Point Interpolation
Point Estimate	S				

Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL
EC25	9.323	7.581	N/A	10.73	NA	13.19
EC50	>15	N/A	N/A	<6.667	NA	NA

Fertilizat	tion Rate Summary		Calculated Variate(A/B)								
C-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Lab Control	5	0.866	0.8	0.89	0.01691	0.03782	4.37%	0.0%	433	500
2.5		5	0.892	0.84	0.92	0.01463	0.03271	3.67%	-3.0%	446	500
5		5	0.83	0.76	0.91	0.02864	0.06403	7.72%	4.16%	415	500
6.06		5	0.752	0.7	0.8	0.01594	0.03564	4.74%	13.16%	376	500
10		5	0.6	0.44	0.71	0.0495	0.1107	18.45%	30.72%	300	500
15		5	0.68	0.6	0.76	0.03033	0.06782	9.97%	21.48%	340	500

Analyst: QA: FC, 1/2/18

Report Date: Test Code:

28 Dec-17 10:58 (p 1 of 1) 1712-S096 | 07-3883-8140

							resi	Code:	17	12-8096 0	7-3883-814	
Echinoid Sp	erm Cell Fertiliz	ation Te	st 15C						Nautilu	s Environ	nental (CA	
Analysis ID:	08-6447-4297		Endpoint:	Fertilization Ra	ite		CET	'IS Version:	CETISv	1 8 7		
Analyzed:	28 Dec-17 10:	58	Analysis:	Parametric Bio	equivalence	-Two Samp		cial Results				
Data Transfo	orm	Zeta	Alt H	yp Trials	Seed	TST b	PMSD	NOEL	LOEL	TOEL	TU	
Angular (Corr	rected)	NA	C*b <		NA	0.75	5.88%	15	>15	NA	6.667	
TST-Welch's	t Test											
Control	vs C-%		Test S	Stat Critical	MSD DE	P-Value	P-Type	Decision	(a:5%)			
Lab Control	2.5*		11.81	1.895	0.054 7	<0.0001	CDF		ificant Effec	t		
	5*		5.849	2.015	0.087 5	0.0010	CDF	J	ificant Effec			
	6.06*		5.937	1.895	0.048 7	0.0003	CDF	•	ificant Effec			
	10		-0.2	2.132	0.115 4	0.5744	CDF	Significan				
	15*		1.954	1.943	0.072 6	0.0492	CDF		ficant Effec	ί		
ANOVA Table	е											
Source	Sum Squares Mean S			Square	DF	F Stat	P-Value	Decision	(α:5%)			
Between	0.468883	3	0.0937	77667	5	17.01	<0.0001	Significan	t Effect			
Error	0.13228		0.0055	511665	24			-				
Total	0.601163	3		,	29							
Distributiona	al Tests											
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)				
Variances	Bartlett E	Equality o	of Variance	5.327	15.09 0.3773 Equal Variances						***************************************	
Distribution	Shapiro-	Wilk W N	lormality	0.9754	0.9031	0.6958	Normal D	Normal Distribution				
Fertilization l	Rate Summary											
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect	
0	Lab Control	5	0.866	0.819	0.913	0.88	0.8	0.89	0.01691	4.37%	0.0%	
2.5		5	0.892	0.8514	0.9326	0.91	0.84	0.92	0.01463	3.67%	-3.0%	
5		5	0.83	0.7505	0.9095	0.82	0.76	0.91	0.02864	7.72%	4.16%	
6.06		5	0.752	0.7078	0.7962	0.75	0.7	0.8	0.01594	4.74%	13.16%	
10		5	0.6	0.4626	0.7374	0.58	0.44	0.71	0.0495	18.45%	30.72%	
15		5	0.68	0.5958	0.7642	0.7	0.6	0.76	0.03033	9.97%	21.48%	
Angular (Cor	rected) Transfor	med Sui	mmary									
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect	
0	Lab Control	5	1.198	1.133	1.264	1.217	1.107	1.233	0.0235	4.39%	0.0%	
2.5		5	1.239	1.175	1.302	1.266	1.159	1.284	0.02273	4.1%	-3.35%	
5		5	1.151	1.042	1.261	1.133	1.059	1.266	0.03945	7.66%	3.91%	
6.06		5	1.05	0.999	1.102	1.047	0.9912	1.107	0.01847	3.93%	12.35%	
10		5	0.888	0.7468	1.029	0.8657	0.7253	1.002	0.05084	12.8%	25.9%	
15		5	0.9712	0.8806	1.062	0.9912	0.8861	1.059	0.0326	7.51%	18.96%	

Report Date:

19 Dec-17 14:06 (p 1 of 1)

Test Code: 1712-5696 07-3883-8140/2C09C67C

Echinoid Sperm Cell Fertilization Test 15C

Nautilus Environmental (CA)

Start Date: End Date:

20 Dec-17 20 Dec-17 Species:

Strongylocentrotus purpuratus

Sample Code: 17-1301 (30)
Sample Source: IDE Americas, Inc.

Protocol: EPA/600/R-95/136 (1995)

Sample Station: M-001 (Unadjusted)

	te: 19 (al: Facility Efflo	uent Sample Station: M-001 (Unadjusted)
C-%	Code	Rep	Pos	# Counted	# Fertilized	Notes
			61	100	75 70 88 91	12/21/17
			62	100	70	
			63	/OO	88	
			64	100	91	
			65	100	72	
			66	/00 /00	70	
			67	/00	76	
			68	100	72 70 76 89 90	
			69	100	90	
			70	100	11	
			71	100	71	
			72	100	91	
W			73	100	76	
			74	100	76 80 87 96	
			75	100	87	
	_		76	/00	10	
			77	100	78	
			78	160	60 58 75	
			79	100	58	
			80	100	15	
			81	100	92 82	
			82	160	82	
			83	100		
			84	100	76	
	+		85 86	160	57	
			87	100	72	
			88	/60	80 88 84 70 62	
			89	160	86	
		-	90	100	<u> </u>	
			91			
			92	100	64	
			93	160	01	
	-		94	100	44 93 88	
	1		95	100	D.	

@ EG Q18 12/28/17

CETIS Test Data Worksheet

Report Date:

19 Dec-17 14:05 (p 1 of 1)

Test Code: 1717-5096 07-3883-8140/2C09C67C

Echinoid Sperm Cell Fertilization Test 15C

Nautilus Environmental (CA)

Start Date:	20 Dec-17	Species:	Strongylocentrotus purpuratus	Sample Code:	17-1301
End Date:	20 Dec-17	Protocol:	EPA/600/R-95/136 (1995)	Sample Source:	IDE Americas, Inc.
Sample Date:	19 Dec-17	Material:	Facility Effluent	Sample Station:	M-001 (Unadjusted)

Sample Date										
C-%	Code	Rep	Pos	# Counted	# Fertilized	Notes				
0	HS	1	86							
0	HS	2	83							
0	HS	3	94							
0	HS	4	69							
0	HS	5	76	***************************************						
0	LC	1	95	100	92	AD 12/20/17				
0	LC	2	66							
0	LC	3	74							
0	LC	4	75	***************************************						
0	LC	5	92							
2.5		1	89							
2.5		2	70			,				
2.5		3	72							
2.5		4	81							
2.5		5	63							
5		1	88							
5		2	84							
5		3	82			740				
5		4	77							
5		5	64							
6.06		1	61	100	77	As 12/20/17				
6.06		2	90		68					
6.06		3	80		P226					
6.06		4	87		2					
6.06		5	73	Ù	75					
10		1	85							
10		2	71							
10		3	79							
10		4	66							
10		5	93							
15		1	65							
15		2	78							
15		3	62							
15		4	67							
15		5	91							

QC: CG.

@100 018 12/20/17

Water Quality Measurements

4	
m	:
	nt

IDE

Test Species: S. purpuratus

Sample ID:

M-001 (unadjusted)

Start Date/Time: 12/20/2017

Sample Log No.: 17- 1301

End Date/Time: 12/20/2017 1015

Dilutions made by:

Test No: ____1712-5096

			Analyst:	RH
· ·		Initial F	Readings	· · · · · · · · · · · · · · · · · · ·
Concentration	DO	рН	Salinity	Temperature
%	(mg/L)	(units)	(ppt)	(°C)
Lab Control	8:2	8.03	33.8	15.6
High Salinity Control	8.2	8.05	38.8	15.4
2.5	8.1	8.04	34.6	15.8
5.0	8.1	8.04	35.5	15.6
6.06	8.1	8.04	35.7	15.5
10	8.2	8.03	36.9	15.6
15	8.2	8.01	38.9	15.6

Comments:			
QC Check:	EG 12/28/17	Final Review:	AC1/2/18

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

Echinoderm Sperm-Cell Fertilization Worksheet

Client: Sample ID: Test No.: Tech initials:	M-001 UNG 1717-5091	djusted 6	Start Date/Time End Date/Time Species Animal Source Date Collected	e: 12/20/2017 / 14/5 s: 5: 14/20/2018 e: Pt. 10/10
Injection Time:	1455		Date Concepted	. 1210 11 1
Sperm Absorbance at 4	100 nm: _ 0.908	(target range of 0.8 - 1.0 fo	or density of 4x10 ⁶ sperm/ml	
Eggs Counted:		ean: 84 X 50 = 4	<u>⊘0 Ü</u> eggs/ml	
	83 Rai	get counts of 80 eggs per vertical fer slide for a final density of 4000	pass on Sedgwick- eggs/ml)	
Initial density: Final density:			egg stock seawater	ml ml
Prepare the embryo sto existing stock (1 part) a	ck according to the calc	parts seawate ulated dilution factor. For exanter (1.25 parts).		2.25, use 100 ml of
Rangefinder Test: ml Sperm Stock ml Seawater			Egg Ratio 400:1 200:1 10 5.0 40 45	100:1 50:1 2.5 1.25 47.5 48.75
Sperm Added (100 µl): Eggs Added (0.5 ml): Test Ended:	Time 1501 1517 1527	Rangefinder Ratio: Fe	urt. Unfert.	
NOTE: Choose a spern this range, choose the organism health, stage	ratio closest to 90 p	s in fertilization between 80 an ercent unless professional jud site conditions).	d 90 percent. If more than o Igment dictates considerati	one concentration is within on of other factors (e.g.,
Definitive Test		Sperm:Egg Ratio Used:	75:1	
Sperm Added (100 µl): Eggs Added (0.5 ml): Test Ended:	Time 1535 1555 1015	QC1 QC2 QC2 Egg Control 1 (C)	rt. Unfert. 1	
Comments:	BASA	2/20/17 No di	union roquine	200
: (PAO OB 12	2017		
QC Check:	EG 12/28/17		Final Review	AC 1/2/18
Nautilus Environmental, 434	10 Vandever Avenue. San I)iego, CA 92120.		•

CETIS Summary Report

Report Date:

28 Dec-17 10:46 (p 1 of 1)

Test Code:

1712-S097 | 05-3431-4355

								Test Code.		17	12-0007 0	10-343 1-4300
Echinoid Spe	rm Cell Fertiliza	tion Te	est 15C							Nautilu	s Environ	mental (CA)
Batch ID: Start Date: Ending Date: Duration:	08-3763-8869 20 Dec-17 15:3 20 Dec-17 16:1 40m	_	Test Type: Protocol: Species: Source:	Fertilization EPA/600/R-95 Strongylocent Pt. Loma	, ,	itus		Analyst: Diluent: Brine: Age:		oratory Sea Applicable	water	
,	03-8048-2221 19 Dec-17 08:0 : 19 Dec-17 13:4 32h (2.7°C)		Code: Material: Source: Station:	17-1301 Facility Effluer IDE Americas M-001 (Daily	, Inc.	Kly		Client: Project:	IDE Carl	sbad Desal	Plant	
Comparison S	Summary								***************************************			
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU	Meth	od			
12-4730-3721	Fertilization Ra	te	15	>15	NA	9.52%	€6.667		-	lultiple Com	parison Te	est
Point Estimat	e Summary											
Analysis ID	Endpoint		Level	%	95% LCL	95% UCL	. TU	Meth	od			
20-9758-9338	Fertilization Ra	te	EC25 EC50	>15 >15	N/A N/A	N/A N/A	<6.66 <6.66	67 Linea	200/2005/200000	erpolation (I	CPIN)	
Test Acceptal	oility											
Analysis ID	Endpoint		Attrib	ute	Test Stat	TAC Lim	nits	Overl	lap	Decision		
12-4730-3721	Fertilization Rat	e	Contro	ol Resp	0.888	0.7 - NL	CONTRACT CONTRACT	Yes			ceptability	/ Criteria
20-9758-9338	Fertilization Rat		Contro	ol Resp	0.888	0.7 - NL		Yes		Passes A	cceptability	/ Criteria
12-4730-3721	Fertilization Rat	e .	PMSD		0.09515	NL - 0.25	·	No		Passes A	cceptability	/ Criteria
Fertilization R	tate Summary											
C-%	Control Type	Coun	t Mean	95% LCL	. 95% UCL	Min	Max	Std E	irr	Std Dev	CV%	%Effect
0	Lab Control	5	0.888	0.8388	0.9372	0.83	0.94	0.017	72	0.03962	4.46%	0.0%
2.5		5	0.916	0.8952	0.9368	0.89	0.93	0.007	483	0.01673	1.83%	-3.15%
5		5	0.896	0.8162	0.9758	0.79	0.94	0.028	74	0.06427	7.17%	-0.9%
6.06		5	0.918	0.835	1	0.81	0.98	0.029	9	0.06686	7.28%	-3.38%
10		5	0.91	0.8437	0.9763	0.82	0.95	0.023	87	0.05339	5.87%	-2.48%
15		5	0.942	0.9033	0.9807	0.89	0.97	0.013	93	0.03114	3.31%	-6.08%
Fertilization R	ate Detail											
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5						
0	Lab Control	0.94	0.83	0.89	0.88	0.9						
2.5		0.89	0.93	0.91	0.93	0.92						
5		0.94	0.94	0.93	0.79	0.88						
6.06		0.9	0.95	0.81	0.98	0.95						
10		0.95	0.95	0.82	0.92	0.91						
15		0.95	0.97	0.96	0.89	0.94						

Report Date:

28 Dec-17 10:46 (p 1 of 2) 1712-S097 | 05-3431-4355

							rest	Code:	171	2-509/ [05-3431-435
Echinoid Sp	erm Cell Fertiliz	ation Tes	t 15C						Nautilu	s Environ	mental (CA
Analysis ID: Analyzed:	12-4730-3721 28 Dec-17 10		indpoint: Fer					IS Version		.8.7	
				rametric-Cor		urnents		cial Result	s: Yes		***************************************
Data Transfo		Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU
Angular (Cor	rectea)	NA	C > T	NA ————————————————————————————————————	NA ————————————————————————————————————		9.52%	15	>15	NA	6.667
Dunnett Mul	Itiple Compariso	n Test									
Control	vs C-%		Test Stat	Critical	MSD DI	P-Value	P-Type	Decision	n(a:5%)		
Lab Control	2.5		-0.8552	2.362	0.122 8	0.9753	CDF	Non-Sigr	nificant Effect		
	5		-0.362	2.362	0.122 8	0.9184	CDF	9	ificant Effect		
	6.06		-1.24	2.362	0.122 8	0.9916	CDF	_	nificant Effect		
	10		-0.7949	2.362	0.122 8	0.9710	CDF		ificant Effect		
	15		-1.933	2.362	0.122 8	0.9991	CDF	Non-Sigr	ificant Effect		
ANOVA Tabl	e										
Source	Sum Squ	uares	Mean Squ	ıare	DF	F Stat	P-Value	Decision	ı(α:5%)		
Between	0.030547	84	0.0061095		5	0.9151	0.4880		ificant Effect		
Error	0.1602329		0.0066763	37	24			rion oign	mount Encot		
Total	0.190780	7			29	_					
Distributiona	al Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision(a:1%)			
Variances	Bartlett E	Equality of	Variance	6.675	15.09	0.2459	Equal Var				
Distribution	Shapiro-'	Wilk W No	ormality	0.9362	0.9031	0.0721	Normal Di				
Fertilization	Rate Summary										
C-%	Caméral Tuna										
	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	Count 5	Mean 0.888	95% LCL 0.8388	95% UCL 0.9372				Std Err 0.01772	CV%	%Effect
0 2.5						Median 0.89 0.92	Min 0.83 0.89	0.94	0.01772	4.46%	0.0%
2.5		5	0.888	0.8388	0.9372	0.89	0.83	0.94 0.93	0.01772 0.007483	4.46% 1.83%	0.0% -3.15%
2.5 5		5 5	0.888 0.916	0.8388 0.8952	0.9372 0.9368	0.89 0.92	0.83 0.89 0.79	0.94 0.93 0.94	0.01772 0.007483 0.02874	4.46% 1.83% 7.17%	0.0% -3.15% -0.9%
2.5 5 6.06		5 5 5	0.888 0.916 0.896	0.8388 0.8952 0.8162	0.9372 0.9368 0.9758	0.89 0.92 0.93	0.83 0.89	0.94 0.93 0.94 0.98	0.01772 0.007483 0.02874 0.0299	4.46% 1.83% 7.17% 7.28%	0.0% -3.15% -0.9% -3.38%
2.5 5 6.06 10		5 5 5 5	0.888 0.916 0.896 0.918	0.8388 0.8952 0.8162 0.835	0.9372 0.9368 0.9758	0.89 0.92 0.93 0.95	0.83 0.89 0.79 0.81	0.94 0.93 0.94	0.01772 0.007483 0.02874	4.46% 1.83% 7.17%	0.0% -3.15% -0.9%
5 6.06 10 15		5 5 5 5 5 5	0.888 0.916 0.896 0.918 0.91 0.942	0.8388 0.8952 0.8162 0.835 0.8437	0.9372 0.9368 0.9758 1 0.9763	0.89 0.92 0.93 0.95 0.92	0.83 0.89 0.79 0.81 0.82	0.94 0.93 0.94 0.98 0.95	0.01772 0.007483 0.02874 0.0299 0.02387	4.46% 1.83% 7.17% 7.28% 5.87%	0.0% -3.15% -0.9% -3.38% -2.48%
2.5 5 6.06 10 15	Lab Control	5 5 5 5 5 5	0.888 0.916 0.896 0.918 0.91 0.942	0.8388 0.8952 0.8162 0.835 0.8437	0.9372 0.9368 0.9758 1 0.9763	0.89 0.92 0.93 0.95 0.92	0.83 0.89 0.79 0.81 0.82	0.94 0.93 0.94 0.98 0.95 0.97	0.01772 0.007483 0.02874 0.0299 0.02387 0.01393	4.46% 1.83% 7.17% 7.28% 5.87% 3.31%	0.0% -3.15% -0.9% -3.38% -2.48% -6.08%
2.5 5 6.06 10 15 Angular (Cor	Lab Control rected) Transfor	5 5 5 5 5 5 5	0.888 0.916 0.896 0.918 0.91 0.942	0.8388 0.8952 0.8162 0.835 0.8437 0.9033	0.9372 0.9368 0.9758 1 0.9763 0.9807	0.89 0.92 0.93 0.95 0.92 0.95	0.83 0.89 0.79 0.81 0.82 0.89	0.94 0.93 0.94 0.98 0.95 0.97	0.01772 0.007483 0.02874 0.0299 0.02387 0.01393	4.46% 1.83% 7.17% 7.28% 5.87% 3.31%	0.0% -3.15% -0.9% -3.38% -2.48% -6.08%
2.5 5 6.06 10 15 Angular (Cor C-%	Lab Control rected) Transfor Control Type	5 5 5 5 5 5 med Sum Count	0.888 0.916 0.896 0.918 0.91 0.942	0.8388 0.8952 0.8162 0.835 0.8437 0.9033	0.9372 0.9368 0.9758 1 0.9763 0.9807 95% UCL 1.313	0.89 0.92 0.93 0.95 0.92 0.95 Median 1.233	0.83 0.89 0.79 0.81 0.82 0.89 Min 1.146	0.94 0.93 0.94 0.98 0.95 0.97	0.01772 0.007483 0.02874 0.0299 0.02387 0.01393 Std Err 0.02852	4.46% 1.83% 7.17% 7.28% 5.87% 3.31% CV% 5.17%	0.0% -3.15% -0.9% -3.38% -2.48% -6.08%
2.5 5 6.06 10 15 Angular (Cor. C- % 0	Lab Control rected) Transfor Control Type	5 5 5 5 5 5 med Sum Count	0.888 0.916 0.896 0.918 0.91 0.942 mary Mean 1.234 1.278	0.8388 0.8952 0.8162 0.835 0.8437 0.9033 95% LCL 1.154 1.241	0.9372 0.9368 0.9758 1 0.9763 0.9807 95% UCL 1.313 1.314	0.89 0.92 0.93 0.95 0.92 0.95 Median 1.233 1.284	0.83 0.89 0.79 0.81 0.82 0.89 Min 1.146 1.233	0.94 0.93 0.94 0.98 0.95 0.97 Max 1.323 1.303	0.01772 0.007483 0.02874 0.0299 0.02387 0.01393 Std Err 0.02852 0.01319	4.46% 1.83% 7.17% 7.28% 5.87% 3.31% CV% 5.17% 2.31%	0.0% -3.15% -0.9% -3.38% -2.48% -6.08% *Effect 0.0% -3.58%
2.5 5 6.06 10 15 Angular (Cor. C-% 0 2.5	Lab Control rected) Transfor Control Type	5 5 5 5 5 5 med Sum Count 5	0.888 0.916 0.896 0.918 0.91 0.942 mary Mean 1.234	0.8388 0.8952 0.8162 0.835 0.8437 0.9033 95% LCL	0.9372 0.9368 0.9758 1 0.9763 0.9807 95% UCL 1.313 1.314 1.374	0.89 0.92 0.93 0.95 0.92 0.95 Median 1.233 1.284 1.303	0.83 0.89 0.79 0.81 0.82 0.89 Min 1.146 1.233 1.095	0.94 0.93 0.94 0.98 0.95 0.97 Max 1.323 1.303 1.323	0.01772 0.007483 0.02874 0.0299 0.02387 0.01393 Std Err 0.02852 0.01319 0.044	4.46% 1.83% 7.17% 7.28% 5.87% 3.31% CV% 5.17% 2.31% 7.86%	0.0% -3.15% -0.9% -3.38% -2.48% -6.08% *Effect 0.0% -3.58% -1.52%
2.5 5 6.06 10 15 Angular (Cor.	Lab Control rected) Transfor Control Type	5 5 5 5 5 5 med Sum Count 5 5	0.888 0.916 0.896 0.918 0.91 0.942 mary Mean 1.234 1.278 1.252	0.8388 0.8952 0.8162 0.835 0.8437 0.9033 95% LCL 1.154 1.241 1.13	0.9372 0.9368 0.9758 1 0.9763 0.9807 95% UCL 1.313 1.314	0.89 0.92 0.93 0.95 0.92 0.95 Median 1.233 1.284	0.83 0.89 0.79 0.81 0.82 0.89 Min 1.146 1.233	0.94 0.93 0.94 0.98 0.95 0.97 Max 1.323 1.303	0.01772 0.007483 0.02874 0.0299 0.02387 0.01393 Std Err 0.02852 0.01319	4.46% 1.83% 7.17% 7.28% 5.87% 3.31% CV% 5.17% 2.31%	0.0% -3.15% -0.9% -3.38% -2.48% -6.08% *Effect 0.0% -3.58%

Analyst: QA: EC, 1/2/18

Report Date: Test Code:

Rankits

28 Dec-17 10:46 (p 2 of 2) 1712-S097 | 05-3431-4355

Echinoid Sperm Cell Fertilization Test 15C Nautilus Environmental (CA) 12-4730-3721 Analysis ID: Endpoint: Fertilization Rate CETISv1.8.7 **CETIS Version:** Analyzed: 28 Dec-17 10:45 Analysis: Parametric-Control vs Treatments Official Results: Yes Graphics 1.0 0.15 0.9 0,10 8.0 Reject Null Fertilization Rate 0.05 0.6 0.00 -û,û5 0.4 0.3 -0.10 0.2 -0.15 0.1 0.0 -0.20 0 LC 2.5 6.06 10 15 -2.5 -2.0 -1.0 -0.5 1.5 2.0 -1.5 0.0 1.0 C-%

QA: EG 1/2/18

Report Date:

28 Dec-17 10:46 (p 1 of 1)

Test Code:

1712-S097 | 05-3431-4355

Echinoid Sperm Cell Fertilization Test 15C

Nautilus Environmental (CA)

Analysis ID: 20-9758-9338 Analyzed:

28 Dec-17 10:45

Endpoint: Fertilization Rate

Analysis: Linear Interpolation (ICPIN)

CETIS Version: Official Results:

CETISv1.8.7

Yes

Linear Interpol	lation Options				
X Transform	Y Transform	Seed	Resamples	Exp 95% CL	Method
Linear	Linear	342569	1000	Yes	Two-Point Interpolation
Point Estimate	s				

Level	<u></u> %	95% LCL	95% UCL	TU	95% LCL	95% UCL
EC25	>15	N/A	N/A	<6.667	NA	NA
EC50	>15	N/A	N/A	<6.667	NA	NA

Fertiliza	tion Rate Summary		Calculated Variate(A/B)								
C-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Lab Control	5	0.888	0.83	0.94	0.01772	0.03962	4.46%	0.0%	444	500
2.5		5	0.916	0.89	0.93	0.007483	0.01673	1.83%	-3.15%	458	500
5		5	0.896	0.79	0.94	0.02874	0.06427	7.17%	-0.9%	448	500
6.06		5	0.918	0.81	0.98	0.0299	0.06686	7.28%	-3.38%	459	500
10		5	0.91	0.82	0.95	0.02387	0.05339	5.87%	-2.48%	455	500
15		5	0.942	0.89	0.97	0.01393	0.03114	3.31%	-6.08%	471	500

TSI

Report Date: Test Code: 28 Dec-17 10:46 (p 1 of 1) 1712-S097 | 05-3431-4355

Echinoid Sp	erm Cell Fertiliz	ation Te	st 15C						Nautilu	s Environ	mental (CA)
Analysis ID:	13-3300-8116		Endpoint:	Fertilization Ra	te		CET	IS Version	: CETISv1	.8.7	
Analyzed:	28 Dec-17 10	:46	Analysis:	Parametric Bio	equivalence	-Two Samp	le Offic	cial Result	s: Yes		
Data Transfo	orm	Zeta	Alt Hy	/p Trials	Seed	TST b	PMSD	NOEL	LOEL	TOEL	TU
Angular (Cor	rected)	NA	C*b <	T NA	NA	0.75	4.79%	15	>15	NA	6.667
TST-Welch's	s t Test										
Control	vs C-%		Test S	tat Critical	MSD DE	P-Value	P-Type	Decision	ı(α:5%)		
Lab Control	2.5*		14.03	1.943	0.049 6	<0.0001	CDF		nificant Effect		
	5*		6.686	2.015	0.099 5	0.0006	CDF		nificant Effect		
	6.06*		6.537	2.015	0.115 5	0.0006	CDF	_	nificant Effect		
	10*		7.868	1.943	0.086 6	0.0001	CDF	_	ificant Effect		
	15*		11.59	1.895	0.067 7	<0.0001	CDF		iificant Effect		
ANOVA Tabl	e					A					
Source	Sum Squ	uares	Mean	Square	DF	F Stat	P-Value	Decision	η(α:5%)		
Between	0.030547	84	0.0061	09567	5	0.9151	0.4880	Non-Sign	ificant Effect		
Error	0.160232	9	0.0066	7637	24			3			
Total	0.190780	7			29	_					
Distributiona	al Tests		***************************************								
Attribute	Test			Test Stat	Critical	P-Value	Decision(α:1%)			
Variances	Bartlett B	Equality o	f Variance	6.675	15.09	0.2459	Equal Var	iances			
Distribution	Shapiro-	Wilk W N	lormality	0.9362	0.9031	0.0721	Normal Di				
Fertilization	Rate Summary							**************************************			
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	0.888	0.8388	0.9372	0.89	0.83	0.94	0.01772	4.46%	0.0%
2.5		5	0.916	0.8952	0.9368	0.92	0.89	0.93	0.007483	1.83%	-3.15%
5		5	0.896	0.8162	0.9758	0.93	0.79	0.94	0.02874	7.17%	-0.9%
6.06		5	0.918	0.835	1	0.95	0.81	0.98	0.0299	7.28%	-3.38%
10		5	0.91	0.8437	0.9763	0.92	0.82	0.95	0.02387	5.87%	-2.48%
15		5	0.942	0.9033	0.9807	0.95	0.89	0.97	0.01393	3.31%	-6.08%
Angular (Cor	rected) Transfor	med Sur	nmary								
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	1.234	1.154	1.313	1.233	1.146	1.323	0.02852	5.17%	0.0%
2.5		5	1.278	1.241	1.314	1.284	1.233	1.303	0.01319	2.31%	-3.58%
5		5	1.252	1.13	1.374	1.303	1.095	1.323	0.044	7.86%	-1.52%
6.06		5	1.298	1.151	1.444	1.345	1.12	1.429	0.05281	9.1%	-5.19%
10		5	1.275	1.167	1.383	1.284	1 122				
15		5	1.2.0	1.107	1.303	1.204	1.133	1.345	0.03893	6.83%	-3.33%

Analyst: QA: FG 1/2/18

Report Date:

19 Dec-17 14:02 (p 1 of 1)

Test Code: 1712-5697 05-3431-4355/1FD8FD73

Echinoid Sperm Cell Fertilization Test 15C

Nautilus Environmental (CA)

Start Date: End Date:

Sample Date: 19 Dec-17

20 Dec-17 20 Dec-17 Species:

Strongylocentrotus purpuratus Protocol: EPA/600/R-95/136 (1995)

Material: Facility Effluent

Sample Code: 17- 1つか

Sample Source: IDE Americas, Inc. Sample Station: M-001 (Daily 40ppt)

C-%	Code	Por	Doc	# Counted	# Fortiline -	Sample Station. W-001 (Daily 40ppt)
U-70	Code	rep	Pos 31		# Fertilized	Notes
				IOD	98	12/21/17
			32	100	93	
			33	100	95	
			34	100	99	
			35	100	92	
			36	100	94	
			37	100	95	
			38	100	95 93	
			39	100	93	
			40	100	89 95	
			41	100	95	
			42	100	94	
			43	100	94	
			44	100	D9197	
****			45	100	91	
			46	100	95	
			47	100	93	
			48	100	91	
			49	100	90	
			50	100	92	
			51	100	89	
			52	100	88 39	
			53	100	39	
			54	100	90 83 88	
			55	100	83	
			56	100	88	
			57	100	96	
			58	100	79 81	
			59			
			60	100	82	

A-Q18 12/21/17 KC

CETIS Test Data Worksheet

Report Date: 19 Dec-17 14:08 (p 1 of 1)
Test Code: パイパーらいすで05-3431-4355/1FD8FD73

Echinoid Sp	erm C	ell Fe	rtiliza	tion Test 150	;			Nautilus Environmental (CA
Start Date: End Date: Sample Date	20 [Dec-17 Dec-17 Dec-17	7	Protoc		centrotus purpuratus R-95/136 (1995) fluent		17- \'ろら\ IDE Americas, Inc. M-001 (Daily 40ppt)
C-%	Code	Rep	Pos	# Counted	# Fertilized		Notes	
0	LC	1	43					
0	LC	2	55		***************************************		7000	
0	LC	3	53		784			
0	LC	4	56					
0	LC	5	54					
2.5		1	51					
2.5		2	38					
2.5		3	48		1700			
2.5		4	32					
2.5		5	50		***************************************			
5		1	34					
5		2	36					
5		3	47		Va.			
5		4	58		110001 Visit VI			
5		5	52					
6,06		1	49	100	92	A ₂	12/20/17	
6.06		2	33		10-		12 (20)()	
6.06		3	59					
6.06		4	31				(
6.06		5	37		*****		TANGER TO THE TANGE TO THE TANG	
10		1	41					
10		2	46					
10		3	60					`
10		4	35					
10		5	45					
15		1	38				-	
15		2	44					
15		3	57					
15		4	40					
15		5	42					

QGCG

Water Quality Measurements

^			
	110	nt	
~	116		

IDE

Test Species: S. purpuratus

Sample ID:

M-001 (40 ppt adjusted)

Start Date/Time: 12/20/2017 \535

Sample Log No.: 17- 1301

End Date/Time: 12/20/2017 \(() \(\)

Dilutions made by: ______

Test No: 17/2-5097

			Analyst	AD
		Initial F	Readings	1
Concentration	DO	рН	Salinity	Temperature
%	(mg/L)	(units)	(ppt)	(°C)
Lab Control	8.3	8.03	33.1	15.1
2.5	8.2	8.04	34.1	14,6
5.0	8-2	8.04	34.2	14.5
6.06	8.2	40.8	34.3	15.1
10	8.2	8.05	34.6	15.1
15	8.2	8.04	35.0	15.1

Comments:			
QC Check:	EG 12/28/17	Final Review:	AC 1/2/18

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

Brine Dilution Worksheet

Project:

IDE

Analyst: CG

Sample ID:

M-001 (40 ppt adjusted)

Test Date: 12/20/2017

Test No:

Test Type: Urchin Fertilization

Salinity of Effluent

64.5

33.5

Date of Brine used: NA

Salinity of Seawater

Target Salinity

40.0

Alk. of 40 ppt Adj. Sample: 148 mg/L as CaCO3

<u>Effluent</u>

Brine Control

Salinity Adjustment Factor: (TS

-SE)/(SB - TS) =

3.77

-6.15

TS = target salinity

SE = salinity of effluent

SB = salinity of brine

Concentration %	Effluent Volume (ml)	Salinity Adjustment Factor	Seawater Volume (ml)	Final Volume (ml)
100	100	3.77	376.9	477

Comments:

Formula for amount of seawater to dilute sample to 40ppt

Use 40 ppt sample as 100% sample for testing.

NA = not applicable; sample not diluted with Nautilus brine.

QC Check: EG 12/28/17

Final Review: A 1/4/8

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

Echinoderm Sperm-Cell Fertilization Worksheet

Client: . Sample ID: Test No.: Tech initials: Injection Time:		oppt adjusted) 097	 	End [Anim	Date/Time: 12/20/2 Date/Time: 12/20/2 Species: 5 al Source: P}	2017 / 1615
Sperm Absorbance at 4	100 nm: 0.90	- (target range of	0.8 1.0 for do	ncity of 4v10 ⁶	onorm/ml\	
Eggs Counted:	\$5		50 = 420	•	sperm/mil)	
Lygs Counted.	89	Mean	30 - 1200	eggs/mi		
	<u>83</u> 83	(target counts of 80 eggs Rafter slide for a final den				
	80				(B
Initial density: Final density:		gs/ml - 1.0 par	ition factor t egg stock ts seawater	egg stoc seawate		ml ml
Prepare the embryo sto existing stock (1 part) a		calculated dilution factor n water (1.25 parts).	. For example,	if the dilution	factor is 2.25, use	100 ml of
Dec C. I. T. I	0000 4		Sperm:Egg			
Rangefinder Test: ml Sperm Stock ml Seawater	2000:1 50 0.0	1600:1 40 10 20	20	10 5	00:1 5.0 100:1 2.5	1.25
IIII Seawatei	Time		30		45 47.5	48.75
Sperm Added (100 µl): Eggs Added (0.5 ml): Test Ended:	1501 1517 1627	Rangefinder Rat	io: Fert. 300 100 100	Unfert.		
	e ratio closest to	results in fertilization betw 90 percent unless profe ason, site conditions).				
Definitive Test		Sperm:Egg Rati	o Used:	5%		
Sperm Added (100 μl): Eggs Added (0.5 ml): Test Ended:	Time 1535 1555 1015	QC1 QC2 Egg Control 1 Egg Control 2	Fert. 91 97 0	Unfert. 4 3 100 400		
Comments:	BAS 9	8 12/20 M. Y	lo dilu	don re	Bring 00	
	PAO 018	12/2011				
QC Check:	EG 17/28	17- San Diagra (24 22422)		Fin	al Review:	1/1/18

Appendix B

Sample Receipt Information

Nautilus Environmental 4340 Vandever Avenue San Diego, CA 92120

Client:	DE
Sample ID:	M-001 (17-3567)
Test ID No(s).:	1712-5096 to 5098

Sample (A, B, C):	A			
Log-in No. (17-xxxx):	1301			
Sample Collection Date & Time:	12/19/17 0800			
Sample Receipt Date & Time:				
Number of Containers & Container Type:	1,4L0061			
Approx. Total Volume Received (L):	~4L			
Check-in Temperature (°C)	2.7			
Temperature OK? 1	(Y) N	YN	Y N	YN
DO (mg/L)	7.4			
pH (units)	7.83			
Conductivity (µS/cm)	1 toping conditional beautiful and the second secon			
Salinity (ppt)	64.50			
Alkalinity (mg/L) ²	208			
Hardness (mg/L) ^{2, 3}				
Total Chlorine (mg/L)	0.02			
Technician Initials	BO			

	Wrehin Fertilization Additional Control? N	Control/Dilution Water: 8:2 / Lab SW / Lab ART Other: Alkalinity: 16 Hardness or Salinity: 34pt Hardness or Salinity: 38.8
Test Performed:		_Control/Dilution Water: 8:2 / Lab SW / Lab ART Other: Alkalinity: Hardness or Salinity: Hardness or Salinity:
Test Performed:		Control/Dilution Water: 8:2 / Lab SW / Lab ART Other: Alkalinity: Hardness or Salinity: Hardness or Salinity: Hardness or Salinity:
Notes:		d be 0-6°C, if received more than 24 hours past collection time. for freshwater samples only, NA = Not Applicable
Additional Comments:	NM = Not Measured	d, tech error (A) Salinity measured by making

Sample Check-In Information

Sample Description:	color	un adi	Da u a	olo los
		VON OCC	DY 1000	JULEY (
00000				
COC Complete (Y/N) A V B C	?			
7-5-0-				
Filtration? Y N)			
Pore Size:	,			
Organisms	or	Debris		
	^			
Salinity Adjustment?		L		
Test: Lent.	Source: 50	awatin Targe	et ppt: ҶѺ	
Test:	Source:	Targe	et ppt:	
Test:	Source:	Targe	et ppt:	
pH Adjustment? Y	(N)			
	A	В	С	
Initial pH:		-		
Amount of HCI added:				
Final pH:				
Cl ₂ Adjustment? Y		_		
Initial Free CI ₂ :	A	B	C	
STS added:				
Final Free Cl ₂ :				
Sample Aeration? Y	(\hat{N})			
	<u> </u>	В	C	
Initial D.O.				
Duration & Rate				
Final D.O.				
Subsamples for Addit	ional Cham	ilaan Daniin	40 V(1)	
Subsamples for Addit NH3 Other		iistry Kequire	ar Y (N)	
Tech Initials A				
			-	
	QC Che	eck: <u>F</u>	1428/1-	-

Appendix C

Chain-of-Custody Form

WEEKLY

	gradus de la companya
CDP laoratory:	Turn Around Time
Entahlpy Laboratory:	Normal:x
WECK Laboratory:	RUSH (24 hr):
Nautilus:x	3 Days:
AIM:	5 Days:
Other:	??? Days

	eekly Toxicity	Project Manag	cardinal sit dates recovered to the con-	ter Sher		_Contact	Informat	ion:	(760)	201-77	77			
		peration at 49 MGD via a le collected to fulfill wee							ANAL	YSES		approx (first live to the		NOTES:
		d. Start: 12/18/17 @ 08				Purple Urchin Chronic Fertilizatior								
	Gla	ss=G Plastic=P				nic Fe								
	Yes=Y No=N Ac	id=A Base=B				Chro								
Drir	ıking Water=DW Seav	vater=SW Soil=S		Pres		chin								
Sample ID	Date	Time	Sample Type	Preservative ?	Container Type	ourple Ur								
M-001 (17- 3567)	12/18-19/17	08:00-08:00	SW	N	4L cubie	X								TDS - 61.13 ppt, EC - 84.89 mS/cm
Relinquished By:		Date:	Time:	po tendo a Oberes Senso	Received By:	Service of the servic			Date:	Time:			Samp	le Condition Upon Receipt:
Kerin		12/19/17	1030		g de la constante de la consta		[:	2/19	1/19	1013	X	Iced		Ambient or°C
any are a succession and distribution of the succession and distribution and distribu)	12/4/11/	3.145	A STATE OF THE PARTY OF THE PAR	And	191	E	-/	12/19/17	1345	W	Iced		Ambient or <u>2.7</u> °C

Nantilus ID: 17-1301

Appendix D

Reference Toxicant Test Data and Statistical Analyses

CETIS Summary Report

Report Date:

29 Dec-17 10:20 (p 1 of 1)

Test Code:

171220sprt | 10-8152-0796

				***************************************				Test Code	:	1714	22USpπ TC)-8152-0796
Echinoid Spe	erm Cell Fertiliza	tion Test	15C							Nautilus	Environm	ental (CA)
Batch ID: Start Date: Ending Date: Duration:		20 Dec-17 15:35			Fertilization EPA/600/R-95/136 (1995) Strongylocentrotus purpuratus Pt. Loma					ral Seawate Applicable	er	
Sample ID: Sample Date: Receive Date Sample Age:				Reference Tox	171220sprt Copper chloride Reference Toxicant Copper Chloride				Inter	nal		
Comparison	Summary											
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU	Meti	hod			
01-9785-4182	Fertilization Rat	е	10	20	14.14	5.86%		Duni	nett Mı	ultiple Com	parison Tes	it
Point Estimat	e Summary											
Analysis ID	Endpoint		Level	μg/L	95% LCL	95% UCL	TU	Meth	hod			
13-6880-4388	Fertilization Rat	е	EC50	41.98	40.29	43.74		Trim	med S	pearman-K	ärber	
Test Acceptal	oility											
Analysis ID	Endpoint		Attrib	ute	Test Stat	TAC Limi	ts	Ove	rlap	Decision		
01-9785-4182	Fertilization Rat	е	Contro	ol Resp	0.94	0.7 - NL		Yes		Passes Ac	ceptability	Criteria
13-6880-4388	Fertilization Rat		Contro	ol Resp	0.94	0.7 - NL		Yes			ceptability	
01-9785-4182	Fertilization Rat	е	PMSE)	0.05856	NL - 0.25		No		Passes Ac	ceptability	Criteria
Fertilization R	Rate Summary											
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std	Err	Std Dev	CV%	%Effect
0	Lab Control	5	0.94	0.9083	0.9717	0.9	0.96	0.01	14	0.0255	2.71%	0.0%
10		5	0.896	0.8793	0.9127	0.88	0.91	0.00	6	0.01342	1.5%	4.68%
20		5	0.856	0.8051	0.9069	0.79	0.9	0.01		0.04099	4.79%	8.94%
40		5	0.562	0.4526	0.6714	0.45	0.69			0.08815	15.68%	40.21%
80		5	0.056	0	0.1255	0.01	0.15			0.05595	99.9%	94.04%
160		5	0.002	0	0.007553	0	0.01	0.00	2	0.004472	223.6%	99.79%
Fertilization R												
C-µg/L	Control Type	Rep 1	Rep 2		Rep 4	Rep 5					************	
0	Lab Control	0.96	0.93	0.9	0.96	0.95						
10		0.88	0.89	0.89	0.91	0.91						
20		0.85	0.79	0.9	0.87	0.87						
40		0.52	0.57	0.58	0.45	0.69						
80		0.15	0.02	0.04	0.06	0.01						
160		0	0.01	0	0	0						

Report Date:	29 Dec-17 10:19 (p 1 of 2)
Test Code:	171220sprt 10-8152-0796

							rest	Coae:	1712	zospit i io	-0152-079
Echinoid Spe	erm Cell Fertili	zation Test	15C						Nautilus	Environm	ental (CA)
Analysis ID: Analyzed:	01-9785-418 29 Dec-17 1		dpoint: Fer alysis: Par	tilization Rat ametric-Con		tments		S Version: ial Results	CETISv1.	8.7	
Data Transfo		Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU
Angular (Corr		NA	C > T	NA	NA		5.86%	10	20	14.14	
Dunnett Mult	tiple Comparis	on Test									
Control	vs C-µg/L		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision(a:5%)		
Lab Control	10		1.943	2.362	0.103 8	0.1100	CDF	Non-Signi	ficant Effect		
	20*		3.297	2.362	0.103 8	0.0064	CDF	Significan	t Effect		
	40*		11.03	2.362	0.103 8	< 0.0001	CDF	Significan	t Effect		
	80*		25.57	2.362	0.103 8	< 0.0001	CDF	Significan	t Effect		
	160*		29.2	2.362	0.103 8	<0.0001	CDF	Significan	t Effect		
ANOVA Tabl	е			4.00							
Source	Sum S	quares	Mean Squ	uare	DF	F Stat	P-Value	Decision	α:5%)		
Between	7.54805	54	1.509611		5	320.6	<0.0001	Significan	t Effect		
Error	0.11300	065	0.0047086	604	24						
Total	7.66106	Ò			29						304.000 NONO 3000 NAPAY 300 TATABAN MARIA SA
Distributiona	al Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances	Bartlet	t Equality of \	/ariance	14.13	15.09	0.0148	Equal Var	iances			
Distribution	Shapir	o-Wilk W No	rmality	0.9264	0.9031	0.0394	Normal D	istribution			
Fertilization	Rate Summary	1									
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	0.94	0.9083	0.9717	0.95	0.9	0.96	0.0114	2.71%	0.0%
10		5	0.896	0.8793	0.9127	0.89	0.88	0.91	0.006	1.5%	4.68%
20		5	0.856	0.8051	0.9069	0.87	0.79	0.9	0.01833	4.79%	8.94%
40		5	0.562	0.4526	0.6714	0.57	0.45	0.69	0.03942	15.68%	40.21%
80		5	0.056	0	0.1255	0.04	0.01	0.15	0.02502	99.9%	94.04%
160		5	0.002	0	0.007553	0	0	0.01	0.002	223.6%	99.79%
Angular (Co	rrected) Transt	ormed Sum	mary								
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	1.327	1.263	1.391	1.345	1.249	1.369	0.02301	3.88%	0.0%
10		5	1.243	1.216	1.27	1.233	1.217	1.266	0.009878	1.78%	6.35%
20		5	1.184	1.113	1.255	1.202	1.095	1.249	0.02545	4.81%	10.78%
40		5	0.8485	0.7368	0.9602	0.8556	0.7353	0.9803	0.04024	10.61%	36.07%
80		5	0.2177	0.07464	0.3608	0.2014	0.1002	0.3977	0.05153	52.93%	83.6%
160		5	0.06005	0.0322	0.0879	0.05002	0.05002	0.1002	0.01003	37.35%	95.48%

Analyst: EC, QA: KEP 1/2/18

Report Date: Test Code: 29 Dec-17 10:19 (p 2 of 2)

Report Date: Test Code:

29 Dec-17 10:19 (p 1 of 1)

171220sprt | 10-8152-0796

Echinoid Sperm Cell Fertilization Test 15C

Nautilus Environmental (CA)

Analysis ID: 13-6880-4388 Analyzed: 29 Dec-17 10:19 Endpoint: Fertilization Rate Analysis: Trimmed Spearman-Kärber

CETIS Version: Official Results: Yes

CETISv1.8.7

eulte:	Ves	

Trimmed Spearman	-Kärber Estimates		

Threshold **Threshold Option** Trim Mu Sigma EC50 95% LCL 95% UCL Control Threshold 0.06 4.68% 1.623 0.008914 41.98 40.29 43.74

Fertilization	on Rate Summary		Calculated Variate(A/B)								
C-μg/L	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Lab Control	5	0.94	0.9	0.96	0.0114	0.0255	2.71%	0.0%	470	500
10		5	0.896	0.88	0.91	0.006	0.01342	1.5%	4.68%	448	500
20		5	0.856	0.79	0.9	0.01833	0.04099	4.79%	8.94%	428	500
40		5	0.562	0.45	0.69	0.03942	0.08815	15.68%	40.21%	281	500
80		5	0.056	0.01	0.15	0.02502	0.05595	99.9%	94.04%	28	500
160		5	0.002	0	0.01	0.002	0.004472	223.6%	99.79%	1	500

Report Date:

29 Dec-17 10:19 (1 of 1)

Echinoid Sperm Cell Fertilization Test 15C

Protocol: EPA/600/R-95/136 (1995)

Nautilus Environmental (CA)

Test Type: Fertilization

Organism: Strongylocentrotus purpuratus (Purpl

Endpoint: Fertilization Rate

Material: Copper chloride Source:

Reference Toxicant-REF

Echinoid Sperm Cell Fertilization Test 15C

Quality	Control	Data
---------	---------	------

Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2017	Oct	12	14:55	60.18	13.55	0.8244			05-0863-6526	07-1531-2424
2			18	14:22	48.53	1.9	0.1156			13-0042-6212	05-6771-5532
3			24	13:15	48.41	1.775	0.108			20-0280-7301	18-5464-1899
4			31	13:59	81.36	34.73	2.113	(+)		06-4227-6723	08-8095-0809
5		Nov	2	12:28	55.32	8.695	0.5289			17-4126-1689	20-0626-8382
6			7	14:30	49.87	3.243	0.1973			10-3521-2857	13-9801-3995
7			11	14:25	43.91	-2.722	-0.1656			14-1655-2339	20-5239-6070
8			13	14:35	20.97	-25.66	-1.561			07-0538-7056	00-9105-4737
9			15	16:09	35.48	-11.15	-0.678			06-3476-9418	17-5783-9769
10			17	14:17	24.03	-22.6	-1.375			20-8374-1268	00-9691-5869
11			19	10:02	70.21	23.58	1.434			12-1164-1483	20-4501-4622
12			20	15:15	38.26	-8.365	-0.5088			08-0578-7050	18-8950-2431
13			29	15:30	50.6	3.965	0.2412			05-0010-1267	11-1707-1208
14			30	15:28	51.48	4.845	0.2947			09-6334-2928	00-8447-7747
15		Dec	5	16:05	37.64	-8.988	-0.5467			00-4872-5743	06-2243-7863
16			6	15:50	41.57	-5.062	-0.3079			04-9516-7018	18-3148-8943
17			12	12:20	39.55	-7.082	-0.4308			01-8906-4164	02-6832-7767
18			14	15:35	32.51	-14.12	-0.8591			11-6397-1428	17-9802-1610
19			15	15:06	26.01	-20.62	-1.254			06-1613-2535	10-1459-1840
20			15	18:53	76.76	30.13	1.833			02-9159-5360	11-8739-9529
21			20	15:35	41.98	-4.652	-0.283			10-8152-0796	13-6880-4388

Report Date: Test Code:

19 Dec-17 13:57 (p 1 of 1)

10-8152-0796/171220sprt

Echinoid Sperm Cell Fertilization Test 15C

Nautilus Environmental (CA)

Start Date:

20 Dec-17

Species:

Strongylocentrotus purpuratus

Sample Code:

171220sprt

End Date:

20 Dec-17

Protocol: EPA/600/R-95/136 (1995)

Sample Source: Reference Toxicant

mple Dat	e: 20 E	Dec-17	7	Materia	al: Copper ch	loride	Sample Station: Copper Chloride	
C-µg/L	Code	Rep	Pos	# Counted	# Fertilized		Notes	
			1	100	Ø	12/21/17		
			2	100	85			
			3	(00)	85 90			
			4	100	19 96		*****	
			5	[00	96			
			6	100	2			
			7	100	6			
			8	(00)	79			
			9	100	Ø			
			10	100	15			
			11	100	52			
			12	100	45			
			13	100	15 52 45 95 58			
			14	100	58			
			15	100				
			16	100	89			
			17	100				
			18	100	69			
			19	100	69 88 91			
			20	100	4/			
			21	100	91			
	-		22	100	93			
			23	100	57			
			24 25	100	57 96 4			
			26	100	4			
			27	100	<i>8</i> ¹ 7			
			28	IDU	89 90			
			29	100	<u> 40 </u>			
			30	100	<u> </u>			
			30	100	87			

CETIS Test Data Worksheet

Report Date:

19 Dec-17 13:57 (p 1 of 1) 10-8152-0796/171220sprt

Test Code:

Nautilus Environmental (CA)

Echinoid Sperm Cell Fertilization Test 15C Strongylocentrotus purpuratus 20 Dec-17 Species:

Start Date: End Date: 20 Dec-17 **Protocol:** EPA/600/R-95/136 (1995) Sample Date: 20 Dec-17

Material: Copper chloride

171220sprt Sample Code:

Sample Source: Reference Toxicant Sample Station: Copper Chloride

C-µg/L	Code	Rep	Pos	# Counted	# Fertilized	Notes
0	LC	1	24	(00)	95	AD 12/20/19
0	LC	2	22			
0	LC	3	28			
0	LC	4	5			·
0	LC	5	13			
10		1	19	100	78	A> 12/20/17
10		2	27			
10		3	16			
10		4	21		•	
10		5	20			
20		1	2	100	81	las 12/20/17
20		2	8			
20		3	3			
20		4	30			
20		5	26			
40		1	11	100	43	AD 12/20/17
40		2	23			
. 40		3	14			
40		4	12			
40		5	18			
80		1	10	100	9	As 12/20/17
80		2	6			•
80		3	25			
80		4	7			
80		5	29			
160		1	1	100	0	EL 080 AD 12/20/17
160		2	15			,
160		3	9			
160		4	17			
160		5	4			

90 AD

Water Quality Measurements

0	1:-	 ٤.	
10	116		

Internal

Test Species: S. purpuratus

Sample ID:

CuCl₂

Start Date/Time: 12/20/2017

535

Test No:

171220sprt

End Date/Time: 12/20/2017

1615

Dilutions made by: AD

High conc. made (μg/L):

160

Vol. Cu stock added (mL): Final Volume (mL):

500

Cu stock concentration (µg/L):

10300

Analyst:

		Initial D	teadings	10.1
Concentration (µg/L)	DO (mg/L)	pH (units)	Salinity (ppt)	Temperature (°C)
Lab Control	8.6	8.07	33.7	14.1
10	8.6	8.06	33.9	14.0
20	8.4	8.03	34.0	P13.814.1
40	8.4	8.03	33.9	14.0
80	8,4	8,00	33.8	14.0
160	8,4	7.99	33.6	14.1

00	ma m	ent	
LO	mm	ient	S:

(A) RHQ1812/20/17

QC Check:

AC10/27/17

Final Review: E4 12 29 17

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

Echinoderm Sperm-Cell Fertilization Worksheet

Client:

Sample ID:

Start Date/Time: 12/20/2017 / End Date/Time: 12/20/2017 /

Species:

Animal Source: Date Collected: 17

Tech initials: Injection Time:

Test No.:

Sperm Absorbance at 400 nm:

0.908

(target range of 0.8 - 1.0 for density of 4x10⁶ sperm/ml)

Eggs Counted:

89

X 50 = 4200 eggs/ml

83 82

(target counts of 80 eggs per vertical pass on Sedgwick-Rafter slide for a final density of 4000 eggs/ml)

SC

201 egas/ml

1.05 dilution factor 1.0 part egg stock egg stock seawater

Initial density: Final density:

4000 eggs/ml

0.09 parts seawater

Prepare the embryo stock according to the calculated dilution factor. For example, if the dilution factor is 2.25, use 100 ml of existing stock (1 part) and 125 ml of dilution water (1.25 parts).

Sperm: Egg Ratio

50:1 800:1 200:1 100:1 400:1 1200:1 2000:1 1600:1 Rangefinder Test: 1.25 2.5 5.0 20 10 40 30 50 ml Sperm Stock 48.75 47.5 40 45 20 30 0.0 10 ml Seawater

Time Sperm Added (100 µl): Eggs Added (0.5 ml):

Rangefinder Ratio: 50:1 1000 130:1

Unfert. Fert.

NOTE: Choose a sperm-to-egg ratio that results in fertilization between 80 and 90 percent. If more than one concentration is within this range, choose the ratio closest to 90 percent unless professional judgment dictates consideration of other factors (e.g., organism health, stage of reproductive season, site conditions).

Definitive Test

Test Ended:

Sperm:Egg Ratio Used:

Sperm Added (100 µl): Eggs Added (0.5 ml):

Time

QC1 QC2

Test Ended:

Egg Control 1 Egg Control 2

Comments:

No dilutor

QC Check:

Final Review: FTF

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

Appendix E

Qualifier Codes

Glossary of Qualifier Codes:

- Q1 Temperatures out of recommended range; corrective action taken and recorded in Test Temperature Correction Log
- Q2 Temperatures out of recommended range; no action taken, test terminated same day
- Q3 Sample aerated prior to initiation or renewal due to dissolved oxygen (D.O.) levels below 6.0 mg/L
- Q4 Test aerated; D.O. levels dropped below 4.0 mg/L
- Q5 Test initiated with aeration due to an anticipated drop in D.O.
- Q6 Airline obstructed or fell out of replicate and replaced; drop in D.O. occurred
- Q7 Salinity out of recommended range
- Q8 Spilled test chamber/ Unable to recover test organism(s)
- Q9 Inadequate sample volume remaining, 50% renewal performed
- Q10 Inadequate sample volume remaining, no renewal performed
- Q11 Sample out of holding time; refer to QA section of report
- Q12 Replicate(s) not initiated; excluded from data analysis
- Q13 Survival counts not recorded due to poor visibility or heavy debris
- Q14 D.O. percent saturation was checked and was ≤ 110%
- Q15 Did not meet minimum test acceptability criteria. Refer to QA section of report.
- Q16 Percent minimum significant difference (PMSD) was <u>below</u> the lower bound limit for acceptability. This indicates that statistics may be over-sensitive in detecting a difference from the control due to low variability in the data set.
- Q17 Percent minimum significant difference (PMSD) was <u>above</u> the upper bound limit for acceptability. This indicates that statistics may be under-sensitive in detecting a difference from the control due to high variability in the data set.
- Q18 Incorrect Entry
- Q19 Illegible Entry
- Q20 Miscalculation
- Q21 Other (provide reason in comments section)
- Q22 Greater than 10% mortality observed upon receipt and/or in holding prior to test initiation.
 Organisms acclimated to test conditions at Nautilus and ultimately deemed fit to use for testing.
- Q23 Test or ganisms r eceived at a <u>temperature</u> greater than 3°C ou tside the r ecommended t est temperature range. However, due to age-specific protocol requirements and/or sample holding time constraints, the organisms were used to initiate tests upon the day of arrival. O rganisms were acclimated to the appropriate test conditions upon receipt and prior to test initiation.
- Q24 Test organisms received at <u>salinity</u> greater than 3 ppt outside of the recommended test salinity range. H owever, due t o age -specific pr otocol r equirements and/ or s ample ho lding t ime constraints, the organisms were used to initiate tests upon the day of arrival. Organisms were acclimated to the appropriate test conditions upon receipt and prior to test initiation.

Updated: 6/30/15