

Chronic Toxicity Test Results for the Carlsbad Desalination Plant

❖ Sample ID: M-001 (Daily) Sample Collection Date: November 15, 2017

Prepared for: IDE AMERICAS, Inc.

4590 Carlsbad Boulevard Carlsbad, CA 92008

Prepared by: Nautilus Environmental

Submitted: November 29, 2017

Data Quality Assurance:

- Nautilus Environmental is accredited in accordance with NELAP by the State of Oregon Environmental Laboratory Accreditation Program (Certificate No. 4053). It is also certified by the State of California Department of Health Services Environmental Laboratory Accreditation Program (Certificate No. 1802) and the State of Washington Department of Ecology (Lab ID C552).
- All data have been reviewed and verified.
- All test results have met minimum test acceptability criteria under their respective EPA protocols, unless otherwise noted in this report.
- o All test results have met internal Quality Assurance Program requirements.

California
4340 Vandever Avenue
San Diago, California 921

San Diego, California 92120 858.587.7333 fax: 858.587.3961 Results verified by: ______ adrienne Cibor

EXECUTIVE SUMMARY

CHRONIC TOXICITY TESTING CARLSBAD DESALINATION PLANT — NOVEMBER 2017 ORDER NO. R9-2006-0065; NPDES NO. CA0109223

Sampling Date: November 15, 2017

Test Date: November 15, 2017

Sample ID: M-001 (pre-treatment off-spec period)

Effluent Limitation: 16.5 TU_c

Results Summary:

	Effluent Te	est Results	Effluent Limitation	
Bioassay Type: Urchin Fertilization	NOEC	TUc	Met? (Yes/No)	
Orchin Fertinzation	5	20	No	

Client: IDE Americas, Inc. Test ID: 1711-S100 Sample ID: M-001 Sample Date: November 15, 2017

INTRODUCTION

A discharge sample was collected in November 2017 for the Poseidon Resources (Channelside) LLC, Carlsbad Desalination Project (CDP) permit for daily and weekly chronic toxicity monitoring purposes. The discharge sample was collected from the CDP M-001 discharge monitoring point during a period of offspec plant operation. Chronic toxicity testing for the effluent sample was conducted during this time according to the permit that was adopted in 2006 (Order No. R9-2006-0065). Bioassay testing was conducted at the Nautilus Environmental (Nautilus) laboratory in San Diego, California on November 15, 2017 using the purple urchin (Strongylocentrotus purpuratus) chronic fertilization test.

MATERIALS AND METHODS

Sample collection and delivery were performed by IDE Americas, Inc. (IDE) personnel. Following arrival at Nautilus, an aliquot of the water sample was poured off and the following water quality parameters were measured: pH, dissolved oxygen (DO), temperature, salinity, alkalinity, and total chlorine. The sample was stored at 4° C in the dark until used for testing. A summary of the sample collection and receipt information is provided in Table 1, and water quality parameters measured upon receipt at Nautilus are presented in Table 2. Testing was conducted in accordance with the protocols described in USEPA 1995, and the methods are summarized in Table 3.

Table 1. Sample Information

Client/Project:	IDE Americas, Inc./Carlsbad Desalination Plant
Sample ID:	M-001 (pre-treatment off-spec period)
Monitoring Period:	November 2017
Sample Material:	Facility Effluent
Sampling Method:	24hr Composite
Sample Collection Date, Time:	11/15/17, 09:00
Sample Receipt Date, Time:	11/15/17, 13:43

Table 2. Water Quality Measurements for the M-001 Sample upon Receipt

Sample Collection	рН	DO	Temp	Salinity	Alkalinity	Total Chlorine
Date		(mg/L)	(°C)	(ppt)	(mg/L as CaCO ₃)	(mg/L)
11/15/17	7.92	9.1	3.5	34.0	130	<0.02

TOXICITY SUMMARY REPORT

Client: IDE Americas, Inc. Test ID: 1711-S100 Sample ID: M-001 Sample Date: November 15, 2017

Table 3. Echinoderm Fertilization Chronic Bioassay Specifications

Test Date, Times: 11/15/17, 16:09 through 16:49

Test Organism: Strongylocentrotus purpuratus (purple sea urchin) Test Organism Source: Field-collected off Point Loma in San Diego, CA

Lab Control/Dilution Water: Natural seawater (source: Scripps Institution of Oceanography inlet,

34±2 parts per thousand (ppt); 20-µm filtered

Test Concentrations: 2.5, 5.0, 6.06, 10, and 15 percent M-001 sample; lab control

Number of Replicates, Organisms

per Replicate:

5 replicates, 2000 eggs per replicate. Sperm to egg ratio determined

before each test with a preliminary rangefinding test.

Test Chamber Type, Volume per

Replicate:

Glass scintillation vial containing 10 mL of test solution

Protocol Used: EPA/600/R-95/136, 1995 West Coast Marine Chronic

Test Type: Fertilization; 20-min sperm exposure to effluent followed by a 20-

min fertilization period

Mean fertilization ≥70% in the control, and percent minimum Acceptability Criteria:

significant difference (PMSD) value <25.

Copper chloride Reference Toxicant Testing:

Statistical Analysis Software: CETIS™, version 1.8.7.20

Statistical analyses were conducted using EPA flowchart specifications as outlined in the test guidance manual (USEPA 1995). Organism performance in the sample dilution series was compared to that observed in the laboratory control exposure. Results were used to calculate the No Observed Effect Concentration (NOEC) and chronic toxic unit (TU_c) values.

Results were also analyzed using the USEPA's Test of Significant Toxicity (TST) approach specified in National Pollutant Discharge Elimination System Test of Significant Toxicity Implementation Document (USEPA 2010). Notably, the California State Water Resources Control Board (SWRCB) published a Draft Policy for Toxicity Assessment and Control (SWRCB 2012), which includes the TST as an alternative method to evaluate toxicity data. This approach applies a modified t-test that takes into account both the statistical power of the test and the magnitude of biological effects in determining the presence of a response. For this sample, the in-stream waste concentration (IWC) is 6.06 percent unadjusted effluent; results are reported as "Pass" if a sample is considered non-toxic at the IWC according to the TST calculation, or "Fail" if considered toxic at the IWC according to the TST. As the TST is not included in the CDP permit at this time, the TST analysis was performed for comparison purposes only.

Client: IDE Americas, Inc. Test ID: 1711-S100 Sample ID: M-001

Sample Date: November 15, 2017

RESULTS

Statistically significant decreases in fertilization rate were observed at the 6.06, 10, and 15 percent effluent concentrations tested when compared to the lab control. The NOEC is reported as 5 and the TU_c is equal to 20, which is above the maximum effluent limitation of 16.5 for this permit. No statistically significant decreases were observed in any of the effluent concentrations according to the TST analysis. Statistical results are summarized in Table 4, and detailed test results are summarized in Table 5. Raw test data and full statistical analyses can be found in Appendix A. Sample receipt information and copies of the chain-of-custody form are in Appendices B and C, respectively.

Table 4. Statistical Results for Purple Urchin Fertilization Testing

Sample ID	NOEC (% sample)	LOEC (% sample)	EC ₅₀ (% sample)		TST Result (Pass/Fail)	Percent Effect at IWC
M-001	5	6.06	>15	20	Pass	9.5

NOEC = No Observed Effect Concentration

LOEC = Lowest Observed Effect Concentration

EC₅₀ = Concentration expected to cause an adverse effect to 50 percent of the test organisms

TUc = Chronic Toxic Unit: 100÷NOEC

TST: Pass = sample is non-toxic at the IWC according to the TST calculation; Fail = sample is toxic at the IWC according to the TST calculation. The TST analysis is not in the existing CDP permit; TST analysis is included here for comparison purposes only. Percent effect (PE) from control is calculated as: PE= ((mean response in control-mean response in the IWC)/mean response in control) *100. A negative PE results when organism performance in the sample is greater than that in the control.

Table 5. Detailed Results of Purple Urchin Fertilization Testing for the M-001 Sample

Test Concentration (% Sample)	Mean Percent Fertilization
Lab Control	88.4
2.5	88.2
5.0	85.6
6.06	80.0*
10	80.4*
15	76.6*

^{*}An asterisk indicates a statistically significant decrease compared to the lab control

Test ID: 1711-S100

Sample ID: M-001 Sample Date: November 15, 2017

Client: IDE Americas, Inc.

QUALITY ASSURANCE

The sample was received on the same day it was collected and was within the appropriate temperature range. The test was initiated within the 36-hour holding time. The PMSD value, which is a measure of test variability, was within the acceptable limits. Statistical analyses followed USEPA flowchart selections and dose-response relationships were reviewed to ensure the reliability of the data. Based on the dose responses observed during testing, the calculated effect concentrations reported are deemed reliable. Additionally, appropriate alpha and beta levels were used for statistical analyses according to the TST Implementation Document guidelines (USEPA 2010).

Results for the concurrent reference toxicant test used to monitor laboratory performance and test organism sensitivity met all test acceptability criteria. The median effect (EC₅₀) value calculated for this test was less than two standard deviations (2SD) of the historical mean for our laboratory, indicating organisms were more sensitive to copper than typical. Results for the reference toxicant test are summarized in Table 6 and presented in full in Appendix D. A list of qualifier codes can be found in Appendix E.

Table 6. Urchin Fertilization Reference Toxicant Test Results

Test Date	EC ₅₀ (µg/L Copper)	Historical Mean EC ₅₀ ±2 SD (μg/L Copper)	CV (%)
11/15/17	35.5	49.4 ± 30.0	30.3

 EC_{50} = Concentration expected to cause an adverse effect to 50 percent of the test organisms Historical Mean $EC_{50} \pm 2$ SD = Mean of historical test results plus or minus two standard deviations CV = Coefficient of Variation

TOXICITY SUMMARY REPORT

Client: IDE Americas, Inc. Test ID: 1711-S100 Sample ID: M-001 Sample Date: November 15, 2017

REFERENCES

California Regional Water Quality Control Board Region 9, San Diego (RWQCB) 2006. Waste Discharge Requirements for the Poseidon Resources (Channelside) LLC, Carlsbad Desalination Project, Discharge to the Pacific Ocean via the Encina Power Station Discharge Channel. Order No. R9-2006-0065, NPDES No. CA109223. June 2006.

- California State Water Resources Control Board (SWRCB) 2012. Draft Policy for Toxicity Assessment and Control. June 2012. Sacramento, CA.
- Tidepool Scientific Software. 2000-2013. CETIS™ Comprehensive Environmental Toxicity Information System Software, Version 1.8.7.20
- USEPA. 1995. Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms. EPA/600/R-95/136.
- USEPA. 2010. National Pollutant Discharge Elimination System Test of Significant Toxicity Implementation Document. EPA/833/R-10/003. June 2010.

Appendix A

Test Data and Statistical Analyses

CETIS Summary Report

Report Date:

20 Nov-17 11:05 (p 1 of 1)

Test Code:

1711-S100 | 19-4490-5136

			**************************************					. cc. Jouc.	-		110100	13-4430-313
Echinoid Spe	erm Cell Fertiliza	ation Te	est 15C							Nautilu	s Environ	mental (CA
Batch ID: Start Date: Ending Date: Duration:	01-6848-5082 15 Nov-17 16:0 15 Nov-17 16:4 40m		Test Type: Protocol: Species: Source:	Fertilization EPA/600/R-95 Strongylocenti Pt. Loma		itus		Analyst: Diluent: Brine: Age:		oratory Sea Applicable	water	
•	04-4131-0805 15 Nov-17 09:0 : 15 Nov-17 13:4 7h (3.5 °C)		Code: Material: Source: Station:	17-1184 Facility Effluer IDE Americas, M-001 (Daily)					IDE Carl	sbad Desal	Plant	
Comparison S	Summary									***************************************		
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU	Metho	od			
11-6467-2366	Fertilization Ra	te	5	6.06	5.505	6.53%	20			ultiple Com	parison Te	est
Point Estimat	e Summary								·			
Analysis ID	Endpoint		Level	%	95% LCL	95% UCL	TU	Metho	od			
04-5621-6871	Fertilization Ra	te	EC25 EC50	>15 >15	N/A N/A	N/A N/A	<6.66 <6.66	7 Linear		rpolation (I	CPIN)	
Test Acceptab	oility											**************************************
Analysis ID	Endpoint		Attrib	ute	Test Stat	TAC Limi	its	Overla	ap	Decision		
04-5621-6871	Fertilization Ra	te	Contro	ol Resp	0.884	0.7 - NL		Yes			cceptability	Criteria
11-6467-2366	Fertilization Rat			l Resp	0.884	0.7 - NL		Yes			cceptability	
11-6467-2366	Fertilization Rat	te	PMSD		0.06535	NL - 0.25		No	-	Passes A	cceptability	Criteria
Fertilization R	ate Summary					370						
C-%	Control Type	Coun	t Mean	95% LCL	95% UCL	Min	Max	Std E	rr	Std Dev	CV%	%Effect
0	Lab Control	5	0.884	0.8472	0.9208	0.85	0.93	0.0132	27	0.02966	3.36%	0.0%
2.5		5	0.882	0.8222	0.9418	0.82	0.95	0.0215	54	0.04817	5.46%	0.23%
5		5	0.856	0.809	0.903	0.83	0.92	0.0169	91	0.03782	4.42%	3.17%
6.06		5	0.8	0.7737	0.8263	0.77	0.82	0.0094		0.02121	2.65%	9.5%
10		5	0.804	0.7661	0.8419	0.76	0.84	0.0136		0.0305	3.79%	9.05%
15		5	0.766	0.6907	0.8413	0.68	0.84	0.0271	13	0.06066	7.92%	13.35%
Fertilization R	ate Detail											
	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5						
0	Control Type Lab Control	Rep 1	Rep 2 0.87	Rep 3 0.85	Rep 4 0.88	Rep 5 0.89						
0 2.5												
		0.93	0.87	0.85	0.88	0.89						
0 2.5		0.93 0.88	0.87 0.9	0.85 0.86	0.88 0.95	0.89 0.82						
0 2.5 5		0.93 0.88 0.84	0.87 0.9 0.83	0.85 0.86 0.92	0.88 0.95 0.86	0.89 0.82 0.83						

Analyst: \(\) QA: \(\frac{\(\) \) \(\) QA: \(\)

Report Date:

20 Nov-17 11:05 (p 1 of 2) 36

- 10	4744 0400 1	
Test Code:	1711-S100	

		/							Nautilue	Environr	nental (CA
Echinoid Sp	erm Cell Fertiliza	ation Test	15C						Mautilus	LIIVIIOIII	
Analysis ID:	11-6467-2366	En	dpoint: Fe	rtilization Rat	e		CET	S Version:	CETISv1.	8.7	
Analyzed:	20 Nov-17 11:			rametric-Cor	-	tments		ial Results			
Data Transfo		Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU
Angular (Corr	rected)	NA	C > T	NA	NA		6.53%	5	6.06	5.505	20
Dunnett Mult	tiple Compariso	n Test									
Control	vs C-%		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision	(α:5%)		
Lab Control	2.5		-0.0194	2.362	0.085 8	0.8390	CDF	Non-Sign	ificant Effect		
	5		1.146	2.362	0.085 8	0.3567	CDF	_	ificant Effect		
	6.06*		3.288	2.362	0.085 8	0.0066	CDF	Significar			
	10*		3.135	2.362	0.085 8	0.0094	CDF	Significar			
	15*		4.378	2.362	0.085 8	0.0005	CDF	Significar			
ANOVA Table								0.9			
Source	Sum Squ	ares	Mean Sq	uare	DF	F Stat	P-Value	Decision	(a·5%)		
Between	0.112104		0.022420		5	6.964	0.0004	Significar	` 		
			0.003219		24	0.304	0.0004	Olgriilloai	IL EUCCE		
Error	0 077271i										
Error Total	0.077271		0.003219	020		mar.					
Total	0.189375		0.003219		29						
Total Distributiona	0.189375		0.003219		29	P.Value	Docision	a:1%)			
Total Distributiona Attribute	0.189375 al Tests Test	8		Test Stat	29 Critical	P-Value	Decision(
Total Distributiona Attribute Variances	0.189375 al Tests Test Bartlett E	Equality of V	/ariance	Test Stat 5.271	Critical 15.09	0.3837	Equal Var	iances			
Total Distributiona Attribute	0.189375 al Tests Test Bartlett E	8	/ariance	Test Stat	29 Critical			iances			
Total Distributiona Attribute Variances Distribution Fertilization	0.189375 al Tests Test Bartlett E Shapiro-	Equality of V	/ariance	Test Stat 5.271 0.9642	Critical 15.09 0.9031	0.3837 0.3950	Equal Var Normal Di	iances			
Total Distributiona Attribute Variances Distribution Fertilization	0.189375 al Tests Test Bartlett E Shapiro-	Equality of V	/ariance	Test Stat 5.271	Critical 15.09	0.3837	Equal Var	iances	Std Err	CV%	%Effect
Total Distributional Attribute Variances Distribution Fertilization C-%	0.189375 al Tests Test Bartlett E Shapiro-	8 Equality of \	/ariance mality	Test Stat 5.271 0.9642	Critical 15.09 0.9031	0.3837 0.3950	Equal Var Normal Di	iances stribution	Std Err 0.01327	CV% 3.36%	%Effect
Total Distributional Attribute Variances Distribution Fertilization C-% 0	0.189375 al Tests Test Bartlett E Shapiro- Rate Summary Control Type	Equality of \ Wilk W Nor Count	/ariance mality M ean	Test Stat 5.271 0.9642 95% LCL	Critical 15.09 0.9031	0.3837 0.3950 Median	Equal Var Normal Di	iances stribution Max			
Distributional Attribute Variances Distribution Fertilization C-% 0 2.5	0.189375 al Tests Test Bartlett E Shapiro- Rate Summary Control Type	Equality of N Wilk W Nor Count 5	/ariance mality Mean 0.884	Test Stat 5.271 0.9642 95% LCL 0.8472	Critical 15.09 0.9031 95% UCL 0.9208	0.3837 0.3950 Median 0.88	Equal Var Normal Di Min 0.85	iances stribution Max 0.93	0.01327	3.36%	0.0%
Distributional Attribute Variances Distribution Fertilization C-% 0 2.5 5	0.189375 al Tests Test Bartlett E Shapiro- Rate Summary Control Type	Equality of N Wilk W Nor Count 5	/ariance mality Mean 0.884 0.882	Test Stat 5.271 0.9642 95% LCL 0.8472 0.8222	29 Critical 15.09 0.9031 95% UCL 0.9208 0.9418	0.3837 0.3950 Median 0.88 0.88	Equal Var Normal Di Min 0.85 0.82	Max 0.93 0.95	0.01327 0.02154	3.36% 5.46%	0.0% 0.23%
Distributional Attribute Variances Distribution Fertilization C-% 0 2.5 5 6.06	0.189375 al Tests Test Bartlett E Shapiro- Rate Summary Control Type	Equality of N Wilk W Nor Count 5 5 5	/ariance mality Mean 0.884 0.882 0.856	7est Stat 5.271 0.9642 95% LCL 0.8472 0.8222 0.809	29 Critical 15.09 0.9031 95% UCL 0.9208 0.9418 0.903	0.3837 0.3950 Median 0.88 0.88 0.84	Min 0.85 0.82 0.83	Max 0.93 0.95 0.92	0.01327 0.02154 0.01691	3.36% 5.46% 4.42%	0.0% 0.23% 3.17%
Distributional Attribute Variances Distribution Fertilization C-% 0 2.5 5 6.06 10	0.189375 al Tests Test Bartlett E Shapiro- Rate Summary Control Type	Equality of N Wilk W Nor Count 5 5 5 5	/ariance mality Mean 0.884 0.882 0.856 0.8	7est Stat 5.271 0.9642 95% LCL 0.8472 0.8222 0.809 0.7737	29 Critical 15.09 0.9031 95% UCL 0.9208 0.9418 0.903 0.8263	0.3837 0.3950 Median 0.88 0.88 0.84 0.8	Equal Var Normal Di Min 0.85 0.82 0.83 0.77	Max 0.93 0.95 0.92 0.82	0.01327 0.02154 0.01691 0.009487	3.36% 5.46% 4.42% 2.65%	0.0% 0.23% 3.17% 9.5%
Distributional Attribute Variances Distribution Fertilization C-% 0 2.5 5 6.06 10 15	0.189375 al Tests Test Bartlett E Shapiro- Rate Summary Control Type	Equality of Norwilk W Nor Count 5 5 5 5 5 5	/ariance mality Mean 0.884 0.882 0.856 0.8 0.804 0.766	7est Stat 5.271 0.9642 95% LCL 0.8472 0.8222 0.809 0.7737 0.7661	29 Critical 15.09 0.9031 95% UCL 0.9208 0.9418 0.903 0.8263 0.8419	0.3837 0.3950 Median 0.88 0.88 0.84 0.8 0.81	Min 0.85 0.82 0.83 0.77 0.76	Max 0.93 0.95 0.92 0.82 0.84	0.01327 0.02154 0.01691 0.009487 0.01364	3.36% 5.46% 4.42% 2.65% 3.79%	0.23% 3.17% 9.5% 9.05%
Total Distributional Attribute Variances Distribution Fertilization C-% 0 2.5 5 6.06 10 15 Angular (Cor	0.189375 al Tests Test Bartlett E Shapiro- Rate Summary Control Type Lab Control	Equality of V Wilk W Nor Count 5 5 5 5 5 5 5 5 5 5 5 5	/ariance mality Mean 0.884 0.882 0.856 0.8 0.804 0.766	7est Stat 5.271 0.9642 95% LCL 0.8472 0.8222 0.809 0.7737 0.7661	29 Critical 15.09 0.9031 95% UCL 0.9208 0.9418 0.903 0.8263 0.8419	0.3837 0.3950 Median 0.88 0.88 0.84 0.8 0.81	Min 0.85 0.82 0.83 0.77 0.76	Max 0.93 0.95 0.92 0.82 0.84	0.01327 0.02154 0.01691 0.009487 0.01364	3.36% 5.46% 4.42% 2.65% 3.79%	0.0% 0.23% 3.17% 9.5% 9.05%
Distributional Attribute Variances Distribution Fertilization C-% 0 2.5 5 6.06 10 15 Angular (Cor	0.189375 al Tests Test Bartlett E Shapiro- Rate Summary Control Type Lab Control	Equality of V Wilk W Nor Count 5 5 5 5 5 5 5	/ariance mality Mean 0.884 0.882 0.856 0.8 0.804 0.766	7est Stat 5.271 0.9642 95% LCL 0.8472 0.8222 0.809 0.7737 0.7661 0.6907	29 Critical 15.09 0.9031 95% UCL 0.9208 0.9418 0.903 0.8263 0.8419 0.8413	0.3837 0.3950 Median 0.88 0.88 0.84 0.8 0.81 0.77	Min 0.85 0.82 0.83 0.77 0.76 0.68	Max 0.93 0.95 0.92 0.82 0.84 0.84	0.01327 0.02154 0.01691 0.009487 0.01364 0.02713	3.36% 5.46% 4.42% 2.65% 3.79% 7.92%	0.0% 0.23% 3.17% 9.5% 9.05% 13.35%
Distributional Attribute Variances Distribution Fertilization C-% 0 2.5 5 6.06 10 15 Angular (Cor	0.189375 al Tests Test Bartlett E Shapiro- Rate Summary Control Type Lab Control	Equality of V Wilk W Nor Count 5 5 5 5 5 5 5 5 5 5 5 5	/ariance mality Mean 0.884 0.882 0.856 0.8 0.804 0.766 mary	7est Stat 5.271 0.9642 95% LCL 0.8472 0.8222 0.809 0.7737 0.7661 0.6907	29 Critical 15.09 0.9031 95% UCL 0.9208 0.9418 0.903 0.8263 0.8419 0.8413	0.3837 0.3950 Median 0.88 0.84 0.8 0.81 0.77	Min 0.85 0.82 0.83 0.77 0.76 0.68	Max 0.93 0.95 0.92 0.82 0.84 0.84	0.01327 0.02154 0.01691 0.009487 0.01364 0.02713	3.36% 5.46% 4.42% 2.65% 3.79% 7.92%	0.0% 0.23% 3.17% 9.5% 9.05% 13.35%
Distributional Attribute Variances Distribution Fertilization C-% 0 2.5 5 6.06 10 15 Angular (Cor C-% 0 2.5	0.189375 al Tests Test Bartlett E Shapiro- Rate Summary Control Type Lab Control	Equality of NorWilk W Nor Count 5 5 5 5 7 med Sumr Count 5	/ariance mality Mean 0.884 0.882 0.856 0.8 0.804 0.766 mary Mean 1.226	7est Stat 5.271 0.9642 95% LCL 0.8472 0.8222 0.809 0.7737 0.7661 0.6907 95% LCL 1.165	29 Critical 15.09 0.9031 95% UCL 0.9208 0.9418 0.903 0.8263 0.8419 0.8413 95% UCL 1.286	0.3837 0.3950 Median 0.88 0.84 0.8 0.81 0.77 Median 1.217	Min 0.85 0.82 0.83 0.77 0.76 0.68 Min 1.173	Max 0.93 0.95 0.92 0.82 0.84 0.84	0.01327 0.02154 0.01691 0.009487 0.01364 0.02713 Std Err 0.02172	3.36% 5.46% 4.42% 2.65% 3.79% 7.92% CV% 3.96%	0.0% 0.23% 3.17% 9.5% 9.05% 13.35% %Effec 0.0%
Total Distributional Attribute Variances Distribution Fertilization C-% 0 2.5 5 6.06 10 15 Angular (Cor C-% 0 2.5 5	0.189375 al Tests Test Bartlett E Shapiro- Rate Summary Control Type Lab Control	Equality of Norwilk W Nor Count 5 5 5 5 5 comed Sumr Count 5 5 5	/ariance mality Mean 0.884 0.882 0.856 0.8 0.804 0.766 mary Mean 1.226 1.226	7est Stat 5.271 0.9642 95% LCL 0.8472 0.8222 0.809 0.7737 0.7661 0.6907 95% LCL 1.165 1.128	29 Critical 15.09 0.9031 95% UCL 0.9208 0.9418 0.903 0.8263 0.8419 0.8413 95% UCL 1.286 1.325	0.3837 0.3950 Median 0.88 0.84 0.8 0.81 0.77 Median 1.217 1.217	Min 0.85 0.82 0.83 0.77 0.76 0.68 Min 1.173 1.133	Max 0.93 0.95 0.92 0.82 0.84 0.84 Max 1.303 1.345	0.01327 0.02154 0.01691 0.009487 0.01364 0.02713 Std Err 0.02172 0.03539	3.36% 5.46% 4.42% 2.65% 3.79% 7.92% CV% 3.96% 6.45%	0.0% 0.23% 3.17% 9.5% 9.05% 13.35% %Effec 0.0% -0.06%
Distributional Attribute Variances Distribution Fertilization C-% 0 2.5 5 6.06 10 15	0.189375 al Tests Test Bartlett E Shapiro- Rate Summary Control Type Lab Control	Equality of Norwilk W Nor Count 5 5 5 5 5 cmed Sumr Count 5 5 5 5	/ariance mality Mean 0.884 0.882 0.856 0.8 0.804 0.766 nary Mean 1.226 1.226 1.184	7est Stat 5.271 0.9642 95% LCL 0.8472 0.8222 0.809 0.7737 0.7661 0.6907 95% LCL 1.165 1.128 1.112	29 Critical 15.09 0.9031 95% UCL 0.9208 0.9418 0.903 0.8263 0.8419 0.8413 95% UCL 1.286 1.325 1.257	0.3837 0.3950 Median 0.88 0.84 0.8 0.81 0.77 Median 1.217 1.217 1.159	Min 0.85 0.82 0.83 0.77 0.76 0.68 Min 1.173 1.133 1.146	Max 0.93 0.95 0.92 0.82 0.84 0.84 Max 1.303 1.345 1.284	0.01327 0.02154 0.01691 0.009487 0.01364 0.02713 Std Err 0.02172 0.03539 0.02603	3.36% 5.46% 4.42% 2.65% 3.79% 7.92% CV% 3.96% 6.45% 4.91%	0.0% 0.23% 3.17% 9.5% 9.05% 13.35% %Effect 0.0% -0.06% 3.36%

Analyst: V QA: ACH 2817

Report Date: Test Code: 20 Nov-17 11:05 (p 2 of 2) 1711-S100 | 19-4490-5136

Echinoid Sperm Cell Fertilization Test 15C Nautilus Environmental (CA) Analysis ID: 11-6467-2366 Endpoint: Fertilization Rate **CETIS Version:** CETISv1.8.7 Analyzed: 20 Nov-17 11:04 Analysis: Parametric-Control vs Treatments Yes Official Results: Graphics 1.0 0.12 0.9 0.08 Fertilization Rate 0.7 0.04 0.6 0.5 0.4 -0.04 0.2 -0.08 0.1 -0.12 0 LC 2.5 6.06 10 15 -1.0 0.0 -2.5 -2.0 -1,5 -0.5 1.0 1.5 2.0 C-% Rankits

Report Date:

20 Nov-17 11:05 (p 1 of 1)

Test Code:

1711-S100 | 19-4490-5136

Echinoid Sperm Cell Fertilization Test 15C

Nautilus Environmental (CA)

Analysis ID: 04-5621-6871 Analyzed:

20 Nov-17 11:04

Endpoint: Fertilization Rate

Analysis: Linear Interpolation (ICPIN)

CETIS Version: Official R

CETISv1.8.7

Resi	ults:	Yes

Linear Interpola	tion Options				
X Transform	Y Transform	Seed	Resamples	Exp 95% CL	Method
Linear	Linear	1908351	1000	Yes	Two-Point Interpolation

Point Estimates

Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL
EC25	>15	N/A	N/A	<6.667	NA	NA
EC50	>15	N/A	N/A	<6.667	NA	NA

Fertilization Rate Summary			Calculated Variate(A/B)								
C-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Lab Control	5	0.884	0.85	0.93	0.01327	0.02966	3.36%	0.0%	442	500
2.5		5	0.882	0.82	0.95	0.02154	0.04817	5.46%	0.23%	441	500
5		5	0.856	0.83	0.92	0.01691	0.03782	4.42%	3.17%	428	500
6.06		5	8.0	0.77	0.82	0.009487	0.02121	2.65%	9.5%	400	500
10		5	0.804	0.76	0.84	0.01364	0.0305	3.79%	9.05%	402	500
15		5	0.766	0.68	0.84	0.02713	0.06066	7.92%	13.35%	383	500

Graphics 1.0 F 0.8 0.7 0.4 0.3 0.2 0.1 8 10 12 14 C-%

Analyst: QA: 4(1)28(17

T5T

Report Date: Test Code: 20 Nov-17 11:05 (p 1 of 1) 1711-S100 | 19-4490-5136

		- W. W.			<i>)</i> (Test	: Code:	171	1-S100 1	9-4490-5136
Echinoid Sp	oerm Cell Fertiliz	zation Te	st 15C	1					Nautilu	s Environ	mental (CA)
Analysis ID:	18-6010-1403	3	Endpoint: F	ertilization Ra	te		CET	IS Version	: CETISv1	.8.7	
Analyzed:	20 Nov-17 11	:04	Analysis: F	Parametric Bio	equivalence	-Two Samp	le Offic	cial Results	s: Yes		
Data Transf		Zeta	Alt Hyp	Trials	Seed	TST b	PMSD	NOEL	LOEL	TOEL	TU
Angular (Cor	rected)	NA	C*b < T	NA	NA	0.75	5.5%	15	>15	NA	6.667
TST-Welch's	s t Test										
Control	vs C-%		Test Sta	at Critical	MSD DF	P-Value	P-Type	Decision	ι(α:5%)		
Lab Control	2.5*		7.882	2.015	0.079 5	0.0003	CDF	Non-Sign	ificant Effect		TO Control of Control
	5*		8.64	1.943	0.06 6	< 0.0001	CDF	_	ificant Effect		
	6.06*		9.364	1.895	0.038 7	<0.0001	CDF	•	ificant Effect		
	10*		8.212	1.895	0.045 7	< 0.0001	CDF	-	ificant Effect		
	15*		4.147	2.015	0.073 5	0.0045	CDF	•	ificant Effect		
ANOVA Tab	le										
Source	Sum Sq	uares	Mean S	quare	DF	F Stat	P-Value	Decision	(a:5%)		
Between	0.112104	17	0.02242	094	5	6.964	0.0004	Significar	·		
Error	0.077271	107	0.00321	9628	24			- 3			
Total	0.189375	8		***************************************	29	_					
Distribution	al Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances	Bartlett I	Equality o	f Variance	5.271	15.09	0.3837	Equal Var				
Distribution	Shapiro-	-Wilk W N	lormality	0.9642	0.9031	0.3950	Normal D				
Fertilization	Rate Summary	**************************************									
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	0.884	0.8472	0.9208	0.88	0.85	0.93	0.01327	3.36%	0.0%
2.5		5	0.882	0.8222	0.9418	0.88	0.82	0.95	0.02154	5.46%	0.23%
5		5	0.856	0.809	0.903	0.84	0.83	0.92	0.01691	4.42%	3.17%
6.06		5	8.0	0.7737	0.8263	0.8	0.77	0.82	0.009487	2.65%	9.5%
10		5	0.804	0.7661	0.8419	0.81	0.76	0.84	0.01364	3.79%	9.05%
		J	0.004								
15		5	0.766	0.6907	0.8413	0.77	0.68	0.84	0.02713	7.92%	13.35%
	rected) Transfo	5	0.766		0.8413	0.77	0.68	0.84	0.02713	7.92%	13.35%
Angular (Cor C-%	rected) Transfo	5	0.766		0.8413 95% UCL	0.77 Median	0.68 Min	0.84 Max	0.02713 Std Err	7.92% CV%	13.35% %Effect
Angular (Cor C-%		5 rmed Sur	0.766 nmary	0.6907							%Effect
Angular (Cor C-% 0 2.5	Control Type	5 rmed Sur Count	0.766 nmary Mean	0.6907 95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	
Angular (Cor C-% 0 2.5	Control Type	5 rmed Sur Count 5	0.766 mmary Mean 1.226	0.6907 95% LCL 1.165	95% UCL 1.286	Median	Min 1.173	Max 1.303	Std Err 0.02172	CV% 3.96%	%Effect 0.0% -0.06%
Angular (Cor C-% 0 2.5 5 6.06	Control Type	5 rmed Sur Count 5 5	0.766 mmary Mean 1.226 1.226	0.6907 95% LCL 1.165 1.128	95% UCL 1.286 1.325	Median 1.217 1.217	Min 1.173 1.133	Max 1.303 1.345	Std Err 0.02172 0.03539	CV% 3.96% 6.45% 4.91%	%Effect 0.0% -0.06% 3.36%
Angular (Cor C-% 0 2.5 5	Control Type	5 rmed Sur Count 5 5 5	0.766 mmary Mean 1.226 1.226 1.184	95% LCL 1.165 1.128 1.112	95% UCL 1.286 1.325 1.257	Median 1.217 1.217 1.159	Min 1.173 1.133 1.146	Max 1.303 1.345 1.284	Std Err 0.02172 0.03539 0.02603	CV% 3.96% 6.45%	%Effect 0.0% -0.06%

Analyst: QA: 1/28/17

Report Date:

14 Nov-17 16:12 (p 1 of 1)

Test Code: 1711-5100

19-4490-5136/73ECE5B0

Echinoid Sperm Cell Fertilization Test 15C

Nautilus Environmental (CA)

Start Date: End Date:

15 Nov-17 15 Nov-17

Species: Strongylocentrotus purpuratus

Sample Code: 17- 1184 Sample Source: IDE Americas, Inc.

Sample Date: 15 Nov-17

Protocol: EPA/600/R-95/136 (1995)

Material: Facility Effluent

Sample Station: M-001 (Daily) (1/5 Sample)

C-%	Code	Rep	Pos	# Counted	# Fertilized	Notes
			61	100	34 38 74 82 36 92	11/10/17
			62	100	88	
			63	100	74	
			64	100	82	
			65	100	36	
			66	100	92	
			67	100	87 93 95 89 81 82 68	
			68	100	93	
			69	100	95	
			70	100	89	
			71	100	81	
			72	100	82	
			73	100	<i>68</i>	
			74	100	77 86	
			75	100	86	
			76	100	85	
			77	100	84	
			78	100	79	
			79 80		88	
			81	100	79	
			82	100	77	
			83	[00	03	
			84	100	88 79 77 76 83 80 84	
			85	100	04	
			86	100	01-	
			87	100	00	*
			88	100	86 82 90 83 82	
			89	100	02	
			90	100	<u>-02</u> 87	
				100	06-	

Report Date:

14 Nov-17 16:13 (p 1 of 1)

Test Code: 1211

1711-5100 19-4490-5136/73ECE5B0

Echinoid Sperm Cell Fertilization Test 15C

Nautilus Environmental (CA)

End Date: 15 Nov-17 Protocol: EPA/600/R-95/136 (1995) Sample Source: IDE Americas, Jnc.

Sample Date: 15 Nov-17 Material: Facility Effluent Sample Station: M-001 (Daily) 11/15 Sample

C-%	Code	Rep	Pos	# Counted	# Fertilized	Notes
0	LC	1	68			
0	LC	2	67	100	85	CH 11/15/17
0	LC	3	76			
0	LC	4	79			
0	LC	5	70	100	88	SG 11/16/17
2.5		1	62			
2.5		2	88	100	88	56 11/16/17
2.5		3	86	•		
2.5		4	69			
2.5		5	87			
5		1	77	The state of the s		
5		2	83			
5		3	66	100	88	56 11/16/17
5		4	65	·		
5		5	89			
6,06		1	90	100	80	SG 11/16/17
6.06		2	64	-		
6.06		3	80	100	84	CH 11/15/17
6.06		4	81			,
6.06		5	75			
10		1	72			
10		2	82	100	79	SGn 11/16/17
10		3	78		0	
10		4	71			
10		5	61			
15		1	73			
15		2	85			
15		3	84	100	73	SG 11/16/17
15		4	74			, ,
15		5	63			

acics.

Marine Chronic Bioassay

Water Quality Measurements

Client	:

IDE

Test Species: S. purpuratus

Sample ID: M-001 Daily (11/15 sample)

Sample Log No.: 17- 18-

Dilutions made by:

Test No: 1711-5100

			Analyst:	EG
		Initial F	Readings	1
Concentration %	DO (mg/L)	pH (units)	Salinity (ppt)	Temperature (°C)
Lab Control	90	8,64	33.5	14.9
2.5	87	8,61	33.7	15.3
5.0	8.8	ે , છ	33.8	15.1
6.06	8.9	8.62	33.8	15.6
10	8.9	8,01	33.8	14.9
15	8.9	8,01	33.8	(4.8

Comments:		
	1. 1.	Λ
QC Check:	_EG 11/17/17	Final Review:

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

Marine Chronic Bioassay

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

Echinoderm Sperm-Cell Fertilization Worksheet

Client: Sample ID: Test No.:	1DE Daily M-00 1711-5	1 - 11/16	sample			Start Date/Tir End Date/Tir Speci Animal Sour	ne: <u>11/8/201</u> es: <u>5, pvr</u>	7/1001
Tech initials: Injection Time:	<u>C6</u> 1525	_				Date Collect		17
Sperm Absorbance at 4	100 nm: 0.942	(ta	rget range of	0.8 - 1.0 for	density of	4x10 ⁶ sperm/r	nl)	
Eggs Counted:	72		<u>6.6</u> x		-	•	,	
	79 <u>B</u> 8782 71 73		nts of 80 eggs for a final der			wick-		
Initial density: Final density:	3 ¢ 30 egg			ution factor rt egg stock rts seawater	_	g stock(awater	ml (c) ml	
Prepare the embryo sto existing stock (1 part) a	ck according to the nd 125 ml of dilutior	calculated of water (1.2	dilution facto 5 parts).	r. For examլ	ole, if the di	lution factor is	2.25, use 1	00 ml of
				Sperm:E	gg Ratio			
Rangefinder Test: ml Sperm Stock ml Seawater	2000:1 50 0.0	40 10	1200:1 30 20	800:1 20 30	400:1 10 40	200:1 5.0 45	100:1 2.5 47.5	50:1 1.25 48.75
Sperm Added (100 µl): Eggs Added (0.5 ml): Test Ended:	Time 1539 1551	<u>Rar</u>	so:\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	io: Feri 80 947 94	16 b,1	fert.) 1		
NOTE: Choose a spern this range, choose the organism health, stage	ratio closest to 90	D percent i	ınless profe	een 80 and ssional judg	90 percent ment_dicta	If more than es considera	one concen tion of othe	tration is within r factors (e.g.,
Definitive Test		Spe	erm:Egg Rati	o Used: <u>/0</u>	y.			
Sperm Added (100 µl): Eggs Added (0.5 ml): Test Ended:	Time 1609 1629 1649			Fert () () ()		fert.		
Comments:	<u>A Q18 AC5 11/13</u>	8/17 B	Garen	15/17	@ No	dilution	Necess	ary
QC Check:	EG 11/19/1	7				Final Revie	w:	

Appendix B

Sample Receipt Information

Nautilus Environmental 4340 Vandever Avenue San Diego, CA 92120

Client:	I DC		_	
Sample ID:	Daily	M-001	(11/15	Sample)
Test ID No(s).:	1711-5	100		

Sample (A, B, C):	A			
Log-in No. (17-xxxx):	1184			
Sample Collection Date & Time:	11/15/17 0900			
Sample Receipt Date & Time:	11/15/17 1343			
Number of Containers & Container Type:	1 46 cube			
Approx. Total Volume Received (L):	~46			
Check-in Temperature (°C)	3-5			
Temperature OK? 1	Ŷ N	Y N	Y N	Y N
DO (mg/L)	9/1			
pH (units)	7.92			
Conductivity (µS/cm)				
Salinity (ppt)	34.0			
Alkalinity (mg/L) ²	- 5			
Hardness (mg/L) ^{2, 3}	130 区			
Total Chlorine (mg/L)	20.02			
Technician Initials	8-3-5 RUY			
•				

Test Performed:	Additional Control? Y Alkalinity: Alkalinity: Alkalinity: Alkalinity: Alkalinity: Alkalinity: Hardness or Salinity:
	Control/Dilution Water: 8:2 / Lab SW / Lab ART Other: Alkalinity: Hardness or Salinity: Additional Control? Y N = Alkalinity: Hardness or Salinity:
Test Performed:	Control/Dilution Water: 8:2 / Lab SW / Lab ART Other: Alkalinity: Hardness or Salinity: Additional Control? Y N = Alkalinity: Hardness or Salinity:
Notes:	¹ Temperature of sample should be 0-6°C, if received more than 24 hours past collection time. ² mg/L as CaCO3, ³ Measured for freshwater samples only, NA = Not Applicable
litional Comments:	: @ ais #5 11/15/17

Sample Check-In Information

COC Complete (Y/N)	?		
ABC			
Filtration? Y N)		
Pore Size:			
Organisms	or	Debris	
Salinity Adjustment?	$Y(\widehat{N})$		
Test:	Source:	Targ	et ppt:
Test:	Source:	Targ	et ppt:
Test:	Source:	Targ	et ppt:
oH Adjustment? Y	N)		
		В	С
Initial pH	:		
mount of HCI added	:		
Final pH	:		
Cl ₂ Adjustment? Y	(N)		
,	A	В	С
Initial Free Cl ₂ :			
STS added:			-
Final Free Cl ₂ :			
Sample Aeration? Y	N		
	U A	В	С
Initial D.O.			
Duration & Rate			
Final D.O.			
Subsamples for Addi	itional Chen	nistry Requir	ed? Y N
	r	-	\cup
Tech Initials A	A В	_ c	

Appendix C

Chain-of-Custody Form

CDP laoratory:	Turn Around Time
Entahlpy Laboratory:	Normal:x
WECK Laboratory:	RUSH (24 hr):
Nautilus:x	3 Days:
AIM:	5 Days:
Other:	??? Days

Project Name: NPDES Daily	Toxicity	Project Mana	ager:	Peter Sh	en	Conta	ct Inform	nation:	(70	50) 201-	7777			
Special instruction: Sample collected at one hour inter									ANAL	YSES	anger - overtalites			NOTES:
be run unadjusted. Start: 1	11/14/17 @ 09:0	0, End: 11/15/17 @ 09:0	0 VH			Purple Urchin Chronic Fertilizatior								
	Gla	ass=G Plastic=P				nic Fe								
	Yes=Y No=N A	cid=A Base=B				Chro								
Drinking	g Water=DW Seav	water=SW Soil=S		Pres		chin								
Sample ID	Date	Time	Sample	Preservative	Container	ırple Ur								
			Туре	٠٠	Туре	<u> </u>					n killing var og til king tille i a	P. K. S. Eddinson, State of St. St.		
M-001 (17- 3293)	11/14-15/17	9:00-9:00	SW	N	4L CUBIE	Х								TDS - 32.23 ppt, EC - 50.15 mS/cm

Relinquished By:		Date:	Time:	and the second	Received By:				Date:	Time:			Samp	le Condition Upon Receipt:
KerinCu	~_/	11/15/17	1145		4		11/2	5/17	7	11:48	X	Iced		Ambient or°C
		10/15-/17 1.	342		Constitution of the Consti		11/15	1/17	Ž			Iced		Ambient or <u>3.5</u> °C

Received: Ryth 115/17 134.3.
Nautilus
Nautilus
Nautilus
Nautilus

Appendix D

Reference Toxicant Test Data and Statistical Analyses

CETIS Summary Report

Report Date:

20 Nov-17 10:43 (p 1 of 1)

Test Code:

171115sprt | 06-3476-9418

Echinoid Spe	erm Cell Fertiliza	ation Tes	t 15C			Santany P. Mary				Nautilus	Environn	nental (CA)
Batch ID: Start Date: Ending Date: Duration:	13-3003-4485 15 Nov-17 16:4 15 Nov-17 16:4 40m	09 P 49 S	est Type: rotocol: pecies: ource:	Fertilization EPA/600/R-95/ Strongylocentre Pt. Loma	Analyst: Diluent: Brine: Age:		ıral Seawate Applicable	er				
Sample ID: Sample Date: Receive Date Sample Age:	: 15 Nov-17	IV S	ode: laterial: ource: tation:	171115sprt Copper chlorid Reference Tox Copper Chlorid	icant			Client: Project:	Inter	nal		
Comparison S	Summary											
Analysis ID	Endpoint	Para a salawania a	NOEL	LOEL	TOEL	PMSD	TU	Meth	nod			
13-5406-6787	Fertilization Ra	ite	20	40	28.28	6.9%		Stee	l Man	y-One Rank	Sum Test	
Point Estimat	te Summary											
Analysis ID	Endpoint		Level	μg/L	95% LCL	95% UCL	TU	Meth	nod			
17-5783-9769	Fertilization Ra	ite	EC50	W. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	34.17	36.85		Trim	med S	Spearman-K	ärber	
Test Acceptal	bility											
Analysis ID	Endpoint		Attrib	ute	Test Stat	TAC Limi	ts	Ove	rlap	Decision		
13-5406-6787	Fertilization Ra	ite	Contro	ol Resp	0.916	0.7 - NL		Yes		Passes Ac	ceptability	Criteria
17-5783-9769	Fertilization Ra	ite	Contro	ol Resp	0.916	0.7 - NL		Yes			ceptability	
13-5406-6787	Fertilization Ra	ite	PMSE)	0.06899	NL - 0.25		No			ceptability	
Fertilization R	Rate Summary											
C-μg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std I	Err	Std Dev	CV%	%Effect
0	Lab Control	5	0.916	0.9092	0.9228	0.91	0.92	0.002	2449	0.005476	0.6%	0.0%
10		5	0.894	0.8654	0.9226	0.87	0.92	0.010	03	0.02302	2.58%	2.4%
20		5	0.83	0.7444	0.9156	0.76	0.93	0.030	082	0.06892	8.3%	9.39%
40		5	0.378	0.2371	0.5189	0.29	0.53	0.050	073	0.1134	30.01%	58.73%
80		5	0.008	0	0.01839	0	0.02	0.003	3742	0.008367	104.6%	99.13%
160		5	0.002	0	0.007553	0	0.01	0.002	2	0.004472	223.6%	99.78%
Fertilization R	tate Detail									, , , , , , , , , , , , , , , , , , ,		
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5						
0	Lab Control	0.91	0.92	0.92	0.92	0.91		***************************************				
10		0.9	0.87	0.92	0.87	0.91						
20		0.93	0.85	0.84	0.77	0.76						
40		0.53	0.47	0.3	0.3	0.29						
			0.04									
80		0	0.01	0	0.01	0.02						

Report Date: Test Code:

20 Nov-17 10:43 (p 1 of 2) 171115sprt | 06-3476-9418

							Test Code: 171115sprt 06-			5-3476-9418	
Echinoid Sp	erm Cell Ferti	lization Test	15C						Nautilus	s Environn	nental (CA)
Analysis ID:	13-5406-678	37 E	ndpoint: Fe	ertilization Rat	te		CET	IS Version	: CETISv1	.8.7	
Analyzed:	20 Nov-17 1	0:42 A	nalysis: No	onparametric-	Control vs	Treatments	Offic	Official Results: Yes			
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU
Angular (Corr	rected)	NA	C > T	NA	NA		6.9%	20	40	28.28	
Steel Many-0	One Rank Sum	ı Test									
Control	vs C-μg/	L	Test Sta	t Critical	Ties D	F P-Value	P-Type	Decision	ı(a:5%)		
Lab Control	10		19.5	16	2 8	0.1589	Asymp	Non-Sigr	ificant Effect		
	20		20	16	0 8	0.1899	Asymp	Non-Sigr	ificant Effect		
	40*		15	16	0 8	0.0191	Asymp	Significa	nt Effect		
	80*		15	16	0 8	0.0191	Asymp	Significa	nt Effect		
	160*		15	16	0 8	0.0191	Asymp	Significa	nt Effect		
ANOVA Table	е										
Source	Sum S	quares	Mean Sq	uare	DF	F Stat	P-Value	Decision	ι(α:5%)		
Between	8.0120	68	1.602414		5	358.8	<0.0001	Significar	nt Effect		
Error	0.1071	979	0.004466	581	24						
Total	8.1192	66			29						
Distributiona	al Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances	Bartle	t Equality of	Variance	23.22	15.09	0.0003	Unequal \	/ariances			
Distribution	Shapii	o-Wilk W No	ormality	0.9156	0.9031	0.0206	Normal D	istribution			
Fertilization	Rate Summar	У									
C-µg/L	Control Type	e Count	Mean	95% LCL	95% UCL	. Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	0.916	0.9092	0.9228	0.92	0.91	0.92	0.002449	0.6%	0.0%
10		5	0.894	0.8654	0.9226	0.9	0.87	0.92	0.0103	2.58%	2.4%
20		5	0.83	0.7444	0.9156	0.84	0.76	0.93	0.03082	8.3%	9.39%
40		5	0.378	0.2371	0.5189	0.3	0.29	0.53	0.05073	30.01%	58.73%
80		5	0.008	0	0.01839	0.01	0	0.02	0.003742	104.6%	99.13%
160		5	0.002	0	0.007553	0	0	0.01	0.002	223.6%	99.78%
Angular (Cor	rected) Trans	formed Sum	ımary								
C-μg/L	Control Type	e Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	1.277	1.265	1.289	1.284	1.266	1.284	0.004392	0.77%	0.0%
10		5	1.241	1.194	1.287	1.249	1.202	1.284	0.01673	3.02%	2.84%
20		5	1.153	1.031	1.275	1.159	1.059	1.303	0.04394	8.52%	9.7%
40		5	0.6598	0.5148	0.8047	0.5796	0.5687	0.8154	0.0522	17.69%	48.33%
80		5	0.08845	0.04003	0.1369	0.1002	0.05002	0.1419	0.01744	44.09%	93.07%
160		5	0.06005	0.0322	0.0879	0.05002	0.05002	0.1002	0.01003	37.35%	95.3%

000-089-187-3

CETIS™ v1.8.7.20

C-µg/L

Report Date: Test Code:

Rankits

20 Nov-17 10:43 (p 2 of 2) 171115sprt | 06-3476-9418

Echinoid Sperm Cell Fertilization Test 15C Nautilus Environmental (CA) Analysis ID: 13-5406-6787 Endpoint: Fertilization Rate **CETIS Version:** CETISv1.8.7 20 Nov-17 10:42 Analyzed: Analysis: Nonparametric-Control vs Treatments Official Results: Yes Graphics 1.0 F 0.16 0.14 ---0.12 8.0 0.10 Fertilization Rate 0.08 0.06 0.6 0.04 0.5 0.02 0.00 -0.02 0.3 -0.04 0.2 -0.06 0.1 -0.08 0.0 -0.10 10 20 40 160 80 -2.5 -2.0 -1.5 -1.0 -0.5 0.0

Report Date:

20 Nov-17 10:43 (p 1 of 1)

Test Code:

171115sprt | 06-3476-9418

Echinoid Spe	Nautilus Environmental (CA)				
Analysis ID:	17-5783-9769	Endpoint:	Fertilization Rate	CETIS Version:	CETISv1.8.7
Analyzed:	20 Nov-17 10:43	Analysis:	Trimmed Spearman-Kärber	Official Results:	Yes

	Trimmed	Spearman-Kärber	Estimates
--	---------	-----------------	-----------

Threshold Option	Threshold	Trim	Mu	Sigma	EC50	95% LCL	95% UCL
Control Threshold	0.084	2.40%	1.55	0.008183	35.48	34.17	36.85

Fertilization	on Rate Summary										
C-µg/L	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Lab Control	5	0.916	0.91	0.92	0.002449	0.005476	0.6%	0.0%	458	500
10		5	0.894	0.87	0.92	0.0103	0.02302	2.58%	2.4%	447	500
20		5	0.83	0.76	0.93	0.03082	0.06892	8.3%	9.39%	415	500
40		5	0.378	0.29	0.53	0.05073	0.1134	30.01%	58.73%	188	500
80		5	0.008	0	0.02	0.003742	0.008367	104.6%	99.13%	4	500
160		5	0.002	0	0.01	0.002	0.004472	223.6%	99.78%	1	500

Report Date: 20 Nov-17 10:44 (1 of 1)

Echinoid Sperm Cell Fertilization Test 15C

Nautilus Environmental (CA)

Test Type: Fertilization Organism: Strongylocentrotus purpuratus (Purpl Material: Copper chloride

Protocol: EPA/600/R-95/136 (1995) Endpoint: Fertilization Rate Source: Reference Toxicant-REF

Echinoid Sperm Cell Fertilization Test 15C

Mean:	49.42	Count:	20	-2s Warning Limit:	19.46	-3s Action Limit:	4.476
Sigma:	14.98	CV:	30.30%	+2s Warning Limit:	79.38	+3s Action Limit:	94.36

Quality	Control	Data
---------	---------	------

Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2017	Sep	8	15:48	37.91	-11.51	-0.7682			18-6871-7794	04-4479-5076
2			10	14:25	40.4	-9.018	-0.602			11-6871-9499	08-4248-1228
3			12	15:51	81.07	31.65	2.113	(+)		20-0603-9450	06-1182-7961
4			13	19:07	52.04	2.616	0.1747			01-4575-6189	02-4618-7964
5			14	15:24	34.24	-15.18	-1.014			11-2846-3680	13-8128-7168
6			16	17:08	56.97	7.55	0.504			08-9569-1329	19-6375-1112
7			18	15:28	39.21	-10.21	-0.6818			19-2924-5672	02-0031-2532
8			20	16:15	33.62	-15.8	-1.055			00-4454-0074	17-7214-1415
9			22	14:50	54.61	5.189	0.3464			20-3341-5102	16-2759-7635
10			27	15:34	34.46	-14.96	-0.9983			12-3257-1101	06-9840-2290
11		Oct	3	13:49	56.88	7.459	0.498			05-1137-7792	06-0895-0170
12			10	15:10	58.36	8.942	0.5969			20-5863-5053	00-1542-1738
13			12	14:55	60.18	10.76	0.7185			05-0863-6526	07-1531-2424
14			18	14:22	48.53	-0.8896	-0.05939			13-0042-6212	05-6771-5532
15			24	13:15	48.41	-1.015	-0.06774			20-0280-7301	18-5464-1899
16			31	13:59	81.36	31.94	2.132	(+)		06-4227-6723	08-8095-0809
17		Nov	2	12:28	55.32	5.905	0.3942			17-4126-1689	20-0626-8382
18			7	14:30	49.87	0.4532	0.03025			10-3521-2857	13-9801-3995
19			11	14:25	43.91	-5.512	-0.3679			14-1655-2339	20-5239-6070
20			13	14:35	20.97	-28.45	-1.899			07-0538-7056	00-9105-4737
21			15	16:09	35.48	-13.94	-0.9304			06-3476-9418	17-5783-9769

CETIS Test Data Worksheet

Report Date:

04 Nov-17 14:53 (p 1 of 1)

Test Code:

06-3476-9418/171108sprt 171115-7-1

Echinoid Sperm Cell Fertilization Test 15C

Nautilus Environmental (CA)

Start Date: 6908 Nov-17	Species:	Strongylocentrotus purpuratus	Sample Code:	171108sprt
End Date: ဨၦီ8 Nov-17	Protocol:	EPA/600/R-95/136 (1995)	Sample Source:	Reference Toxicant
Sample Date: 08 Nov-17	Material:	Copper chloride	Sample Station:	Copper Chloride

mpie Dat	e.@90 1	40V-1			al: Copperch		
C-µg/L	Code	Rep	Pos	# Counted	# Fertilized	Notes	
			1	100	.30	11/16/17	
			2	100	84		
			3	100	92		
			4	100	77		
			5	100	92		
			6	100	91		
	-		7	100	29		
			8	100	Ø		-
			9	100	76		
			10	100	9 87		
			11	100			
			12	100	Ø		
			13	100	93		
			14	100	53		
			15	100	47		
	-		16 17	100	<i>E</i>		
			18	100			***************************************
			19	100	9/		
			20	100	85		
			21	100	92		
	-		22	100	-87-		
	-		23	100			
			24	100	<i>30</i> 2		
			25	100	0		
			26	100	<u> </u>		
			27	100	91		
			28	100	90		
			29	100	92		
			30	100	/		
				100		1 107/4/4/4	

(A) GIR ATS 11/13/17

B) E4 018 1/17/17

CETIS Test Data Worksheet

Report Date: Test Code:

04 Nov-17 14:53 (p 1 of 1) 06-3476-9418/171108spp

Echinoid Sperm Cell	Fertilization Test 15C
---------------------	------------------------

Nautilus Environmental (CA)

Start Date: @ 08 Nov-17	Species:	Strongylocentrotus purpuratus	Sample Code:	171118 6017 171108sprt-@
End Date: 🏵 🐯 Nov-17	Protocol:	EPA/600/R-95/136 (1995)	Sample Source:	Reference Toxicant
Sample Date;⊕Ó8 Nov-17	Material:	Copper chloride	Sample Station:	Copper Chloride

C-µg/L	Code	Rep	Pos	# Counted	# Fertilized	Notes
0	LC	1	6			
0	LC	2	3			
0	LC	3	29			
0	LC	4	20	100	95	SG 11/16/17
0	LC	5	18		•	
10		1	28			
10		2	21			
10		3	5	100	91	SG 11/16/17
10		4	11			
10		5	27			
20		1	13			
20		2	19			
20		3	2			
20		4	4	100	85	56 11/16/17
20		5	9	•		·
40		1	14	100	51	AO 11/15/17
40		2	15			
40		3	23			
40		4	1	/0G	30	SG 11/16/17
40		5	7			
80		1	8	100	11	SG 11/16/17
80		2	30		*	
80		3	26			
80		4	17			
80		5	24			
160		1	10			
160		2	22			
160		3	12			
160		4	16	/00	9	56 11/16/17
160		5	25			. , , , , , , , , , , , , , , , , , , ,

@ EG Q18 11/17/17

Marine Chronic Bioassay

Water Quality Measurements

Analyst:

Client :	Internal	Test Species: S. purpuratus
Sample ID:	CuCl ₂	
Test No:	171(15 sp + 171108sprt (g)	End Date/Time: 11/8/2017 @ 1049

Dilutions made by:

High conc. made (μg/L): 160 8.3 Vol. Cu stock added (mL): 500 Final Volume (mL):

Cu stock concentration (µg/L): 9,600

CG Initial Readings Concentration DO рΗ Salinity Temperature (μg/L) (mg/L) (units) (ppt) (°C) 7.99 **Lab Control** 33.5 8.8 10 7.99 33.9 8.6 7.98 20 8.6 33.8 40 7.98 80 7.98 7.99 160 15.8

Comments:	(D &18 A15 11/13/17		
QC Check:	EG 11/17/A	Final Review:	K11/27/17

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

Marine Chronic Bio	assay			Ed	:hinoderm S	Sperm-Cell	Fertilizatio	on Worksheet
Client: Sample ID: Test No.:	nterna CVC12 171115 sp.	t				Start Date/Tir End Date/Tir	ll/is/i7 me: <u>41/8/201</u> me: <u>11/8/201</u> ies: ⋝, pvr	7/1609 76/1649
Tech initials: Injection Time:	1525					Date Collect	led: nw	14
Sperm Absorbance at 4	.00 nm: <u>0.94</u>	2(ti	arget range o	f 0.8 - 1.0 t	for density of 4	x10 ⁶ sperm/i	ml)	
Eggs Counted:	72 79 8 87 82 71 73	(target cou		per vertica	eg I pass on Sedge 0 eggs/ml)			
Initial density: Final density:		gs/ml gs/ml		ution facto art egg stoc arts seawat	k se	g stock awater	C ml	
Prepare the embryo sto existing stock (1 part) ar	ck according to th nd 125 ml of dilutio	e calculated on water (1.2	dilution facto 25 parts).			ution factor is	s 2.25, use 1	00 ml of
Rangefinder Test:	2000:1	1600:1	1200:1	<u>Sperm</u> 800:1	:Egg Ratio 400:1	200:1	100:1	50:1
ml Sperm Stock ml Seawater	50 0.0	40	30 20	20 30	10 40	5.0	2.5	1.25
Sperm Added (100 µl): Eggs Added (0.5 ml): Test Ended:	Time 1539 1551 1601		singefinder Ra 50 · \ 100 · \ 200 · \	tio: <u>F</u>	ert. Uni		47.5	48.75
NOTE: Choose a sperm								

this range, choose the ratio closest to 90 percent unless professional judgment dictates consideration of other factors (e.g., organism health, stage of reproductive season, site conditions).

Sperm:Egg Ratio Used: _______

Sperm Added (100 μl): Eggs Added (0.5 ml): Test Ended:	Time 1609 1629 1649	QC1 QC2 Egg Control 1 Egg Control 2	Fert.	Unfert. 11 100 100
Comments:	A: Q18 4C5 11/13/17	BCGarentis/1	70	No dilution necessary

QC Check:

Definitive Test

Appendix E

Qualifier Codes

Glossary of Qualifier Codes:

- Q1 Temperatures out of recommended range; corrective action taken and recorded in Test Temperature Correction Log
- Q2 Temperatures out of recommended range; no action taken, test terminated same day
- Q3 Sample aerated prior to initiation or renewal due to dissolved oxygen (D.O.) levels below 6.0 mg/L
- Q4 Test aerated; D.O. levels dropped below 4.0 mg/L
- Q5 Test initiated with aeration due to an anticipated drop in D.O.
- Q6 Airline obstructed or fell out of replicate and replaced; drop in D.O. occurred
- Q7 Salinity out of recommended range
- Q8 Spilled test chamber/ Unable to recover test organism(s)
- Q9 Inadequate sample volume remaining, 50% renewal performed
- Q10 Inadequate sample volume remaining, no renewal performed
- Q11 Sample out of holding time; refer to QA section of report
- Q12 Replicate(s) not initiated; excluded from data analysis
- Q13 Survival counts not recorded due to poor visibility or heavy debris
- Q14 D.O. percent saturation was checked and was ≤ 110%
- Q15 Did not meet minimum test acceptability criteria. Refer to QA section of report.
- Q16 Percent minimum significant difference (PMSD) was <u>below</u> the lower bound limit for acceptability. This indicates that statistics may be over-sensitive in detecting a difference from the control due to low variability in the data set.
- Q17 Percent minimum significant difference (PMSD) was <u>above</u> the upper bound limit for acceptability. This indicates that statistics may be under-sensitive in detecting a difference from the control due to high variability in the data set.
- Q18 Incorrect Entry
- Q19 Illegible Entry
- Q20 Miscalculation
- Q21 Other (provide reason in comments section)
- Q22 Greater than 10% mortality observed upon receipt and/or in holding prior to test initiation.
 Organisms acclimated to test conditions at Nautilus and ultimately deemed fit to use for testing.
- Q23 Test organisms received at a <u>temperature</u> greater than 3°C outside the recommended test temperature range. However, due to age-specific protocol requirements and/or sample holding time constraints, the organisms were used to initiate tests upon the day of arrival. Organisms were acclimated to the appropriate test conditions upon receipt and prior to test initiation.
- Q24 Test organisms received at <u>salinity</u> greater than 3 ppt outside of the recommended test salinity range. However, due to age-specific protocol requirements and/or sample holding time constraints, the organisms were used to initiate tests upon the day of arrival. Organisms were acclimated to the appropriate test conditions upon receipt and prior to test initiation.

Updated: 6/30/15