

# Chronic Toxicity Test Results for the Carlsbad Desalination Plant

❖ Sample ID: M-001 (Daily) Sample Collection Date: September 21, 2017

Prepared for: IDE AMERICAS, Inc.

4590 Carlsbad Boulevard Carlsbad, CA 92008

Prepared by: Nautilus Environmental

Submitted: October 6, 2017

#### **Data Quality Assurance:**

- Nautilus Environmental is accredited in accordance with NELAP by the State of Oregon Environmental Laboratory Accreditation Program (Certificate No. 4053). It is also certified by the State of California Department of Health Services Environmental Laboratory Accreditation Program (Certificate No. 1802) and the State of Washington Department of Ecology (Lab ID C552).
- All data have been reviewed and verified.
- All test results have met minimum test acceptability criteria under their respective EPA protocols, unless otherwise noted in this report.
- o All test results have met internal Quality Assurance Program requirements.

**California** 4340 Vandever Avenue San Diego, California 92120

858.587.7333 fax: 858.587.3961 Results verified by: \_\_\_\_\_\_ advienne libor

# **EXECUTIVE SUMMARY**

# CHRONIC TOXICITY TESTING CARLSBAD DESALINATION PLANT — SEPTEMBER 2017

ORDER NO. R9-2006-0065; NPDES NO. CA0109223

Sampling Date: September 21, 2017

<u>Test Date:</u> September 22, 2017

Sample ID: M-001 (plant by-pass period)

Effluent Limitation: 16.5 TU<sub>c</sub>

# Results Summary:

|                      | Effluent Te | st Results | Effluent Limitation |
|----------------------|-------------|------------|---------------------|
| Bioassay Type:       | NOEC        | TUc        | Met? (Yes/No)       |
| Urchin Fertilization | <2.5        | >40        | No                  |

Test ID: 1709-S207

Client: IDE Americas, Inc. Sample ID: M-001

Sample Date: September 21, 2017

#### INTRODUCTION

A discharge sample was collected in September 2017 for the Poseidon Resources (Channelside) LLC, Carlsbad Desalination Project (CDP) permit for daily chronic toxicity monitoring purposes. The discharge sample was collected from the CDP M-001 discharge monitoring point during a period of plant by-pass. Chronic toxicity testing for the effluent sample was conducted during this time according to the permit that was adopted in 2006 (Order No. R9-2006-0065). Bioassay testing was conducted at the Nautilus Environmental (Nautilus) laboratory in San Diego, California on September 22, 2017 using the purple urchin (*Strongylocentrotus purpuratus*) chronic fertilization test.

#### **MATERIALS AND METHODS**

Sample collection and delivery were performed by IDE Americas, Inc. (IDE) personnel. Following arrival at Nautilus, an aliquot of the water sample was poured off and the following water quality parameters were measured: pH, dissolved oxygen (DO), temperature, salinity, alkalinity, and total chlorine. The sample was stored at 4° C in the dark until used for testing. A summary of the sample collection and receipt information is provided in Table 1, and water quality parameters measured upon receipt at Nautilus are presented in Table 2. Testing was conducted in accordance with the protocols described in USEPA 1995, and the methods are summarized in Table 3.

Table 1. Sample Information

| Client/Project:               | IDE Americas, Inc./Carlsbad Desalination Plant |
|-------------------------------|------------------------------------------------|
| Sample ID:                    | M-001 (plant by-pass period)                   |
| Monitoring Period:            | September 2017                                 |
| Sample Material:              | Facility Effluent                              |
| Sampling Method:              | 24hr Composite                                 |
| Sample Collection Date, Time: | 9/21/17, 08:00                                 |
| Sample Receipt Date, Time:    | 9/22/17, 12:55                                 |

Table 2. Water Quality Measurements for the M-001 Sample upon Receipt

| Sample Collection | рН   | DO     | Temp | Salinity | Alkalinity      | Total Chlorine |
|-------------------|------|--------|------|----------|-----------------|----------------|
| Date              |      | (mg/L) | (°C) | (ppt)    | (mg/L as CaCO₃) | (mg/L)         |
| 9/21/17           | 7.48 | 9.6    | 2.5  | 32.0     | 136             | <0.02          |

TOXICITY SUMMARY REPORT

Client: IDE Americas, Inc. Test ID: 1709-S207 Sample ID: M-001

Sample Date: September 21, 2017

#### Table 3. Echinoderm Fertilization Chronic Bioassay Specifications

Test Date, Times: 9/22/17, 14:50 through 15:30

Test Organism: Strongylocentrotus purpuratus (purple sea urchin) Test Organism Source: Field-collected off Point Loma in San Diego, CA

Lab Control/Dilution Water: Natural seawater (source: Scripps Institution of Oceanography inlet,

34±2 parts per thousand (ppt); 20-µm filtered

Test Concentrations: 2.5, 5.0, 6.06, 10, and 15 percent M-001 sample; lab control

Number of Replicates, Organisms

per Replicate:

5 replicates, 2000 eggs per replicate. Sperm to egg ratio determined

before each test with a preliminary rangefinding test.

Test Chamber Type, Volume per

Replicate:

Glass scintillation vial containing 10 mL of test solution

Protocol Used: EPA/600/R-95/136, 1995 West Coast Marine Chronic

Test Type: Fertilization; 20-min sperm exposure to effluent followed by a 20-

min fertilization period

Mean fertilization ≥70% in the control, and percent minimum Acceptability Criteria:

significant difference (PMSD) value <25.

Copper chloride Reference Toxicant Testing:

Statistical Analysis Software: CETIS™, version 1.8.7.20

Statistical analyses were conducted using EPA flowchart specifications as outlined in the test guidance manual (USEPA 1995). Organism performance in the sample dilution series was compared to that observed in the laboratory control exposure. Results were used to calculate the No Observed Effect Concentration (NOEC) and chronic toxic unit (TUc) values.

Results were also analyzed using the USEPA's Test of Significant Toxicity (TST) approach specified in National Pollutant Discharge Elimination System Test of Significant Toxicity Implementation Document (USEPA 2010). Notably, the California State Water Resources Control Board (SWRCB) published a Draft Policy for Toxicity Assessment and Control (SWRCB 2012), which includes the TST as an alternative method to evaluate toxicity data. This approach applies a modified t-test that takes into account both the statistical power of the test and the magnitude of biological effects in determining the presence of a response. For this sample, the in-stream waste concentration (IWC) is 6.06 percent unadjusted effluent; results are reported as "Pass" if a sample is considered non-toxic at the IWC according to the TST calculation, or "Fail" if considered toxic at the IWC according to the TST. As the TST is not included in the CDP permit at this time, the TST analysis was performed for comparison purposes only.

Test ID: 1709-S207

Client: IDE Americas, Inc. Sample ID: M-001

Sample Date: September 21, 2017

#### **RESULTS**

A statistically significant decrease in the fertilization rate was observed in all effluent concentrations tested relative to the lab control. The NOEC is reported as less than 2.5 and the TUc is greater than 40, which is above the maximum effluent limitation of 16.5 for this permit. According to the TST analysis, a significant effect was observed at 15 percent effluent concentration when compared to lab control. Statistical results are summarized in Table 4, and detailed test results are summarized in Table 5. Raw test data and full statistical analyses can be found in Appendix A. Sample receipt information and copies of the chain-of-custody form are in Appendices B and C, respectively.

Table 4. Statistical Results for Purple Urchin Fertilization Testing

| Sample I D | NOEC<br>(% sample) | LOEC<br>(% sample) | EC <sub>50</sub><br>(% sample) |     | TST Result<br>(Pass/Fail) | Percent<br>Effect at<br>IWC |
|------------|--------------------|--------------------|--------------------------------|-----|---------------------------|-----------------------------|
| M-001      | <2.5               | 2.5                | >15                            | >40 | Pass                      | 6.6                         |

NOEC = No Observed Effect Concentration

LOEC = Lowest Observed Effect Concentration

 $EC_{50}$  = Concentration expected to cause an adverse effect to 50 percent of the test organisms

 $TU_c = Chronic Toxic Unit: 100 \div NOEC$ 

TST: Pass = sample is non-toxic at the IWC according to the TST calculation; Fail = sample is toxic at the IWC according to the TST calculation. The TST analysis is not in the existing CDP permit; TST analysis is included here for comparison purposes only. Percent effect (PE) from control is calculated as: PE= ((mean response in control-mean response in the IWC)/mean response in control) \*100. A negative PE results when organism performance in the sample is greater than that in the control.

Table 5. Detailed Results of Purple Urchin Fertilization Testing for the M-001 Sample

| Test Concentration<br>(% Sample) | Mean Percent Fertilization |  |  |  |  |  |
|----------------------------------|----------------------------|--|--|--|--|--|
| Lab Control                      | 93.4                       |  |  |  |  |  |
| 2.5                              | 86.6*                      |  |  |  |  |  |
| 5.0                              | 85.6*                      |  |  |  |  |  |
| 6.06                             | 87.2*                      |  |  |  |  |  |
| 10                               | 84.8*                      |  |  |  |  |  |
| 15                               | 75.0*                      |  |  |  |  |  |

<sup>\*</sup>An asterisk indicates a statistically significant decrease compared to the lab control

Client: IDE Americas, Inc. Test ID: 1709-S207 Sample ID: M-001

Sample Date: September 21, 2017

#### **QUALITY ASSURANCE**

The sample was received the day after it was collected and was within the appropriate temperature range. The test was initiated within the 36-hour holding time. The PMSD value, which is a measure of test variability, was within the acceptable limits. Statistical analyses followed USEPA flowchart selections and dose-response relationships were reviewed to ensure the reliability of the data. Based on the dose responses observed during testing, the calculated effect concentrations reported are deemed reliable. Additionally, appropriate alpha levels were used for statistical analyses according to the TST Implementation Document guidelines (USEPA 2010).

Results for the concurrent reference toxicant test used to monitor laboratory performance and test organism sensitivity met all test acceptability criteria. The median effect (EC50) value calculated for this test was within two standard deviations (2SD) of the historical mean for our laboratory, indicating organisms were of typical sensitivity to copper. Results for the reference toxicant test are summarized in Table 6 and presented in full in Appendix D. A list of qualifier codes can be found in Appendix E.

Table 6. Urchin Fertilization Reference Toxicant Test Results

| Test Date | EC <sub>50</sub> (µg/L Copper) | Historical Mean EC <sub>50</sub> ±2 SD (µg/L Copper) | CV<br>(%) |
|-----------|--------------------------------|------------------------------------------------------|-----------|
| 9/20/17   | 33.6                           | 49.9 ± 33.3                                          | 33.4      |

EC<sub>50</sub> = Concentration expected to cause an adverse effect to 50 percent of the test organisms Historical Mean EC<sub>50</sub> ± 2 SD = Mean of historical test results plus or minus two standard deviations CV = Coefficient of Variation

TOXICITY SUMMARY REPORT

Client: IDE Americas, Inc. Test ID: 1709-S207 Sample ID: M-001 Sample Date: September 21, 2017

#### REFERENCES

California Regional Water Quality Control Board Region 9, San Diego (RWQCB) 2006. Waste Discharge Requirements for the Poseidon Resources (Channelside) LLC, Carlsbad Desalination Project, Discharge to the Pacific Ocean via the Encina Power Station Discharge Channel. Order No. R9-2006-0065, NPDES No. CA109223. June 2006.

- California State Water Resources Control Board (SWRCB) 2012. Draft Policy for Toxicity Assessment and Control. June 2012. Sacramento, CA.
- Tidepool Scientific Software. 2000-2013. CETIS™ Comprehensive Environmental Toxicity Information System Software, Version 1.8.7.20
- USEPA. 1995. Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms. EPA/600/R-95/136.
- USEPA. 2010. National Pollutant Discharge Elimination System Test of Significant Toxicity Implementation Document. EPA/833/R-10/003. June 2010.

Appendix A

Test Data and Statistical Analyses

# **CETIS Summary Report**

Report Date:

29 Sep-17 08:30 (p 1 of 1)

Test Code:

1709-S207 | 09-4269-1276

| Echinoid Spe                                          | rm Cell Fertiliza                                                | tion Te | st 15C                                         |                        |                                                                     |                               |            |              |        |        |                            | Nautilus     | s Environm   | ental (CA) |
|-------------------------------------------------------|------------------------------------------------------------------|---------|------------------------------------------------|------------------------|---------------------------------------------------------------------|-------------------------------|------------|--------------|--------|--------|----------------------------|--------------|--------------|------------|
| Batch ID:<br>Start Date:<br>Ending Date:<br>Duration: | 08-8008-4079<br>22 Sep-17 14:5<br>22 Sep-17 15:3<br>40m          |         | Test Type:<br>Protocol:<br>Species:<br>Source: | EPA/60                 | 0/R-95/<br>docentro                                                 | 136 (1995)<br>itus purpuratus |            | Dilue        | Brine: |        | oratory Seav<br>Applicable | water        |              |            |
| _                                                     | 21-3223-4699<br>21 Sep-17 08:0<br>22 Sep-17 12:5<br>31h (2.5 °C) |         | Code:<br>Material:<br>Source:<br>Station:      | Facility<br>IDE Am     | 17-1053<br>Facility Effluent<br>IDE Americas, Inc.<br>M-001 (Daily) |                               |            |              |        |        | IDE<br>Carls               | sbad Desal   | Plant        |            |
| Comparison S                                          | Summary                                                          |         |                                                |                        |                                                                     |                               |            |              |        |        |                            |              |              |            |
| Analysis ID                                           | Endpoint                                                         |         | NOEL                                           | . LC                   | EL                                                                  | TOEL                          | PMSD       | TU           |        | Metho  | bc                         |              |              |            |
| 16-2812-1508                                          | Fertilization Rat                                                | te      | <2.5                                           | 2.5                    | 5                                                                   | NA                            | 6.23%      | >40          |        | Dunne  | ett M                      | ultiple Com  | parison Tes  | st         |
| Point Estimat                                         | e Summary                                                        |         |                                                |                        |                                                                     |                               |            |              |        |        |                            |              |              |            |
| Analysis ID                                           | Endpoint                                                         |         | Level                                          | %                      |                                                                     | 95% LCL                       | 95% UCL    | TU           |        | Metho  | od                         |              |              |            |
| 11-5982-7793                                          | Fertilization Ra                                                 | ie      | EC25<br>EC50                                   | >1<br>>1               |                                                                     | N/A<br>N/A                    | N/A<br>N/A | <6.6<br><6.6 |        | Linear | r Inte                     | rpolation (I | CPIN)        |            |
| Test Acceptal                                         | oility                                                           |         |                                                |                        |                                                                     |                               |            | ~            |        |        |                            |              |              |            |
| Analysis ID                                           | Endpoint                                                         |         | Attrib                                         | ute                    |                                                                     | Test Stat                     | TAC Limi   | its          |        | Overl  | ар                         | Decision     |              |            |
| 11-5982-7793                                          | Fertilization Rat                                                | e       | Contro                                         | ol Resp 0.934 0.7 - NL |                                                                     |                               |            |              |        | Yes    | <u> </u>                   | Passes A     | ceptability  | Criteria   |
| 16-2812-1508                                          | Fertilization Rat                                                | ie .    | Contro                                         | ol Resp                |                                                                     | 0.934                         | 0.7 - NL   |              |        | Yes    |                            | Passes A     | cceptability | Criteria   |
| 16-2812-1508                                          | Fertilization Rat                                                | e       | PMSE                                           | )                      |                                                                     | 0.06234                       | NL - 0.25  | 11/211-11/0  |        | No     |                            | Passes A     | cceptability | Criteria   |
| Fertilization R                                       | ate Summary                                                      |         |                                                |                        |                                                                     |                               |            |              |        |        |                            |              |              |            |
| C-%                                                   | Control Type                                                     | Coun    | t Mean                                         | 95                     | % LCL                                                               | 95% UCL                       | Min        | Max          |        | Std E  | rr                         | Std Dev      | CV%          | %Effect    |
| 0                                                     | Lab Control                                                      | 5       | 0.934                                          | 0.8                    | 3905                                                                | 0.9775                        | 0.88       | 0.97         | ,      | 0.015  | 68                         | 0.03507      | 3.76%        | 0.0%       |
| 2.5                                                   |                                                                  | 5       | 0.866                                          | 0.8                    | 3493                                                                | 0.8827                        | 0.85       | 0.88         | ;      | 0.006  |                            | 0.01342      | 1.55%        | 7.28%      |
| 5                                                     |                                                                  | 5       | 0.856                                          |                        | 417                                                                 | 0.9703                        | 0.7        | 0.93         | i      | 0.041  | 18                         | 0.09209      | 10.76%       | 8.35%      |
| 6.06                                                  |                                                                  | 5       | 0.872                                          |                        | 3498                                                                | 0.8942                        | 0.85       | 0.89         |        | 0.008  |                            | 0.01789      | 2.05%        | 6.64%      |
| 10                                                    |                                                                  | 5       | 0.848                                          |                        | 7792                                                                | 0.9168                        | 0.8        | 0.93         |        | 0.024  |                            | 0.05541      | 6.53%        | 9.21%      |
| 15                                                    |                                                                  | 5       | 0.75                                           | 0.6                    | 924                                                                 | 0.8076                        | 0.71       | 0.82         |        | 0.020  | 74                         | 0.04637      | 6.18%        | 19.7%      |
| Fertilization R                                       | ate Detail                                                       |         |                                                |                        |                                                                     |                               |            |              |        |        |                            |              |              |            |
| C-%                                                   | Control Type                                                     | Rep 1   | Rep 2                                          | Re                     | р 3                                                                 | Rep 4                         | Rep 5      |              |        |        |                            |              |              |            |
| 0                                                     | Lab Control                                                      | 0.96    | 0.97                                           | 0.9                    | )3                                                                  | 0.93                          | 0.88       |              |        |        |                            |              |              |            |
| 2.5                                                   |                                                                  | 0.86    | 0.85                                           | 0.8                    | 88                                                                  | 0.88                          | 0.86       |              |        |        |                            |              |              |            |
| 5                                                     |                                                                  | 0.89    | 0.91                                           | 0.8                    | 35                                                                  | 0.7                           | 0.93       |              |        |        |                            |              |              |            |
| 6.06                                                  |                                                                  | 0.89    | 0.89                                           | 0.8                    | 35                                                                  | 0.86                          | 0.87       |              |        |        |                            |              |              |            |
| 10                                                    |                                                                  | 0.81    | 0.82                                           | 0.8                    | 88                                                                  | 0.8                           | 0.93       |              |        |        |                            |              |              |            |
| 15                                                    |                                                                  | 0.71    | 0.74                                           | 0.7                    | 7                                                                   | 0.71                          | 0.82       |              |        |        |                            |              |              |            |

Analyst:  $\sqrt{\frac{QA: Acg}{g}}$ 

Report Date: Test Code: 29 Sep-17 08:30 (p 1 of 2) 1709-S207 | 09-4269-1276

|                           |                                |              |                            |                               |          |         | 1000                | Code.                      | .,               |          | 4200 1270  |
|---------------------------|--------------------------------|--------------|----------------------------|-------------------------------|----------|---------|---------------------|----------------------------|------------------|----------|------------|
| Echinoid Spe              | erm Cell Fertiliza             | tion Test 1  | 5C                         |                               |          |         |                     |                            | Nautilus         | Environm | ental (CA) |
| Analysis ID:<br>Analyzed: | 16-2812-1508<br>29 Sep-17 8:29 |              | dpoint: Fen<br>alysis: Par | tilization Rat<br>ametric-Con |          | ments   |                     | S Version:<br>ial Results: | CETISv1.8<br>Yes | B.7      |            |
| Data Transfo              | rm                             | Zeta         | Alt Hyp                    | Trials                        | Seed     |         | PMSD                | NOEL                       | LOEL             | TOEL     | TU         |
| Angular (Corre            |                                | NA           | C > T                      | NA                            | NA       |         | 6.23%               | <2.5                       | 2.5              | NA       | >40        |
| Dunnett Mult              | iple Comparison                | Test         |                            |                               |          |         |                     |                            |                  |          |            |
| Control                   | vs C-%                         |              | Test Stat                  | Critical                      | MSD DF   | P-Value | P-Type              | Decision(                  | α:5%)            |          |            |
| Lab Control               | 2.5*                           |              | 2.675                      | 2.362                         | 0.107 8  | 0.0261  | CDF                 | Significant                | Effect           |          |            |
| Lab Control               | 5*                             |              | 2.745                      | 2.362                         | 0.107 8  | 0.0225  | CDF                 | Significant                | Effect           |          |            |
|                           | 6.06*                          |              | 2.473                      | 2.362                         | 0.107 8  | 0.0399  | CDF                 | Significant                | Effect           |          |            |
|                           | 10*                            |              | 3.125                      | 2.362                         | 0.107 8  | 0.0096  | CDF                 | Significant                |                  |          |            |
|                           | 15*                            |              | 5.928                      | 2.362                         | 0.107 8  | <0.0001 | CDF                 | Significani                | Effect           |          |            |
| ANOVA Table               | е                              |              |                            | 10.10                         |          |         |                     |                            |                  |          |            |
| Source                    | Sum Squ                        | ares         | Mean Squ                   | ıare                          | DF       | F Stat  | P-Value             | Decision(                  | α:5%)            |          |            |
| Between                   | 0.1840878                      | 3            | 0.0368175                  | 55                            | 5        | 7.142   | 0.0003              | Significant                | Effect           |          |            |
| Error                     | 0.1237248                      |              | 0.0051552                  | 201                           | 24       |         |                     |                            |                  |          |            |
| Total                     | 0.3078126                      |              |                            |                               | 29       | _       |                     |                            |                  |          |            |
| Distributiona             | al Tests                       |              |                            |                               |          |         |                     |                            |                  |          |            |
| Attribute                 | Test                           |              |                            | Test Stat                     | Critical | P-Value | Decision            | (α:1%)                     |                  |          |            |
| Variances                 | Bartlett E                     | guality of \ | /ariance                   | 13.79                         | 15.09    | 0.0170  | Equal Vai           | riances                    |                  |          |            |
| Distribution              | Shapiro-                       | Wilk W Nor   | mality                     | 0.9519                        | 0.9031   | 0.1903  | Normal Distribution |                            |                  |          |            |
| Fertilization             | Rate Summary                   |              |                            |                               |          |         |                     |                            |                  |          |            |
| C-%                       | Control Type                   | Count        | Mean                       | 95% LCL                       | 95% UCL  | Median  | Min                 | Max                        | Std Err          | CV%      | %Effect    |
| 0                         | Lab Control                    | 5            | 0.934                      | 0.8905                        | 0.9775   | 0.93    | 0.88                | 0.97                       | 0.01568          | 3.76%    | 0.0%       |
| 2.5                       |                                | 5            | 0.866                      | 0.8493                        | 0.8827   | 0.86    | 0.85                | 0.88                       | 0.006            | 1.55%    | 7.28%      |
| 5                         |                                | 5            | 0.856                      | 0.7417                        | 0.9703   | 0.89    | 0.7                 | 0.93                       | 0.04118          | 10.76%   | 8.35%      |
| 6.06                      |                                | 5            | 0.872                      | 0.8498                        | 0.8942   | 0.87    | 0.85                | 0.89                       | 0.008            | 2.05%    | 6.64%      |
| 10                        |                                | 5            | 0.848                      | 0.7792                        | 0.9168   | 0.82    | 0.8                 | 0.93                       | 0.02478          | 6.53%    | 9.21%      |
| 15                        |                                | 5            | 0.75                       | 0.6924                        | 0.8076   | 0.74    | 0.71                | 0.82                       | 0.02074          | 6.18%    | 19.7%      |
| Angular (Co               | rrected) Transfor              | rmed Sum     | mary                       |                               |          |         |                     |                            |                  |          |            |
| C-%                       | Control Type                   | Count        | Mean                       | 95% LCL                       | 95% UCL  | Median  | Min                 | Max                        | Std Err          | CV%      | %Effect    |
| 0                         | Lab Control                    | 5            | 1.318                      | 1.231                         | 1.405    | 1.303   | 1.217               | 1.397                      | 0.03121          | 5.3%     | 0.0%       |
| 2.5                       |                                | 5            | 1.196                      | 1.172                         | 1.221    | 1.187   | 1.173               | 1.217                      | 0.008837         | 1.65%    | 9.22%      |
| 5                         |                                | 5            | 1.193                      | 1.041                         | 1.346    | 1.233   | 0.9912              | 1.303                      | 0.05485          | 10.28%   | 9.46%      |
| 6.06                      |                                | 5            | 1.206                      | 1.172                         | 1.239    | 1.202   | 1.173               | 1.233                      | 0.01199          | 2.23%    | 8.52%      |
| 10                        |                                | 5            | 1.176                      | 1.073                         | 1.279    | 1.133   | 1.107               | 1.303                      | 0.03715          | 7.06%    | 10.77%     |
| 15                        |                                | 5            | 1.049                      | 0.9805                        | 1.117    | 1.036   | 1.002               | 1.133                      | 0.02453          | 5.23%    | 20.43%     |
|                           |                                | -            |                            |                               |          |         |                     |                            |                  |          |            |

Analyst: J QA: AC97917

Report Date: Test Code: 29 Sep-17 08:30 (p 2 of 2) 1709-S207 | 09-4269-1276

Nautilus Environmental (CA) **Echinoid Sperm Cell Fertilization Test 15C** CETISv1.8.7 **CETIS Version:** Endpoint: Fertilization Rate Analysis ID: 16-2812-1508 Parametric-Control vs Treatments Official Results: Yes Analyzed: 29 Sep-17 8:29 Analysis: Graphics 0.20 0.9 0.15 8.0 0.10 ertilization Rate 0.6 0.00 -0.05 -0.10 0.2 -0.20 0.1 -0.25 6.06 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 1.0 1.5 2.0 Rankits C-%

Report Date:

29 Sep-17 08:30 (p 1 of 1)

Test Code:

1709-S207 | 09-4269-1276

**Echinoid Sperm Cell Fertilization Test 15C** 

Nautilus Environmental (CA)

Analysis ID: Analyzed:

11-5982-7793 29 Sep-17 8:29

Endpoint: Fertilization Rate Analysis:

Linear Interpolation (ICPIN)

**CETIS Version:** 

CETISv1.8.7

Official Results: Yes

| Linear Interpola | ation Options |        |           |            |                         |
|------------------|---------------|--------|-----------|------------|-------------------------|
| X Transform      | Y Transform   | Seed   | Resamples | Exp 95% CL | Method                  |
| Linear           | Linear        | 464304 | 1000      | Yes        | Two-Point Interpolation |

#### **Point Estimates**

| Level | %   | 95% LCL | 95% UCL | TU     | 95% LCL | 95% UCL |
|-------|-----|---------|---------|--------|---------|---------|
| EC25  | >15 | N/A     | N/A     | <6.667 | NA      | NA      |
| EC50  | >15 | N/A     | N/A     | <6.667 | NA      | NA      |

| Fertilizat | tion Rate Summary |       |       |      |      |         |         |        |         |     |     |
|------------|-------------------|-------|-------|------|------|---------|---------|--------|---------|-----|-----|
| C-%        | Control Type      | Count | Mean  | Min  | Max  | Std Err | Std Dev | CV%    | %Effect | Α   | В   |
| 0          | Lab Control       | 5     | 0.934 | 0.88 | 0.97 | 0.01568 | 0.03507 | 3.76%  | 0.0%    | 467 | 500 |
| 2.5        |                   | 5     | 0.866 | 0.85 | 0.88 | 0.006   | 0.01342 | 1.55%  | 7.28%   | 433 | 500 |
| 5          |                   | 5     | 0.856 | 0.7  | 0.93 | 0.04118 | 0.09209 | 10.76% | 8.35%   | 428 | 500 |
| 6.06       |                   | 5     | 0.872 | 0.85 | 0.89 | 0.008   | 0.01789 | 2.05%  | 6.64%   | 436 | 500 |
| 10         |                   | 5     | 0.848 | 8.0  | 0.93 | 0.02478 | 0.05541 | 6.53%  | 9.21%   | 424 | 500 |
| 15         |                   | 5     | 0.75  | 0.71 | 0.82 | 0.02074 | 0.04637 | 6.18%  | 19.7%   | 375 | 500 |

# Graphics



Analyst: QA: AC9199117



Report Date: Test Code: 29 Sep-17 08:30 (p 1 of 1) 1709-S207 | 09-4269-1276

|                 |                   |             |           |                  | <u> </u>    |            | Tes                 | t Code:     | 170            | 09-S207   C | 9-4269-127 |  |
|-----------------|-------------------|-------------|-----------|------------------|-------------|------------|---------------------|-------------|----------------|-------------|------------|--|
| Echinoid Sp     | erm Cell Fertiliz | zation Tes  | t 15C     |                  |             |            |                     |             | Nautilu        | s Environ   | mental (CA |  |
| Analysis ID:    | 20-5304-3124      | l E         | ndpoint:  | Fertilization Ra | ite         |            | CET                 | IS Version  | : CETISv       | 187         |            |  |
| Analyzed:       | 29 Sep-17 8:2     | 29 <b>A</b> | Inalysis: | Parametric Bio   | equivalence | e-Two Samp |                     | cial Result |                |             |            |  |
| Data Transfo    | orm               | Zeta        | Alt Hy    | /p Trials        | Seed        | TST b      | PMSD                | NOEL        | LOEL           | TOEL        | TU         |  |
| Angular (Cori   | rected)           | NA          | C*b <     | T NA             | NA          | 0.75       | 3.35%               | 10          | 15             | 12.25       | 10         |  |
| TST-Welch's     | t Test            |             |           |                  |             |            |                     |             |                |             |            |  |
| Control         | vs C-%            |             | Test S    | tat Critical     | MSD DI      | F P-Value  | P-Type              | Decision    | n(a:5%)        |             |            |  |
| Lab Control     | 2.5*              |             | 8.312     | 2.015            | 0.050 5     | 0.0002     | CDF                 |             | nificant Effec | t           |            |  |
|                 | 5*                |             | 3.435     | 2.015            | 0.120 5     | 0.0093     | CDF                 | _           | nificant Effec |             |            |  |
|                 | 6.06*             |             | 8.257     | 2.015            | 0.053 5     | 0.0002     | CDF                 | -           | nificant Effec |             |            |  |
|                 | 10*               |             | 4.271     | 1.943            | 0.085 6     | 0.0026     | CDF                 |             | nificant Effec |             |            |  |
|                 | 15                |             | 1.777     | 1.895            | 0.064 7     | 0.0594     | CDF                 | Significa   |                | •           |            |  |
| ANOVA Table     | e                 |             |           |                  |             |            |                     |             |                |             |            |  |
| Source          | Sum Squ           | uares       | Mean :    | Square           | DF          | F Stat     | P-Value             | Decision    | ı(α:5%)        |             |            |  |
| Between         | 0.184087          | '8          | 0.0368    | 1755             | 5           | 7,142      | 0.0003              | Significal  | ·              |             |            |  |
| Error           | 0.123724          | <b>18</b>   | 0.0051    | 55201            | 24          |            | 0.0000              | Olganiloui  | it Elloot      |             |            |  |
| Total           | 0.307812          | 26          |           |                  | 29          | _          |                     |             |                |             |            |  |
| Distributiona   | l Tests           |             |           |                  |             |            |                     |             |                |             |            |  |
| Attribute       | Test              |             |           | Test Stat        | Critical    | P-Value    | Decision            | (α:1%)      |                |             |            |  |
| Variances       | Bartlett f        | Equality of | Variance  | 13.79            | 15.09       | 0.0170     | Equal Variances     |             |                |             |            |  |
| Distribution    | Shapiro-          | Wilk W No   | ormality  | 0.9519           | 0.9031      | 0.1903     | Normal Distribution |             |                |             |            |  |
| Fertilization i | Rate Summary      |             |           |                  |             |            |                     |             |                |             |            |  |
| C-%             | Control Type      | Count       | Mean      | 95% LCL          | 95% UCL     | Median     | Min                 | Max         | Std Err        | CV%         | %Effect    |  |
| 0               | Lab Control       | 5           | 0.934     | 0.8905           | 0.9775      | 0.93       | 0.88                | 0.97        | 0.01568        | 3.76%       | 0.0%       |  |
| 2.5             |                   | 5           | 0.866     | 0.8493           | 0.8827      | 0.86       | 0.85                | 0.88        | 0.006          | 1.55%       | 7.28%      |  |
| 5               |                   | 5           | 0.856     | 0.7417           | 0.9703      | 0.89       | 0.7                 | 0.93        | 0.04118        | 10.76%      | 8.35%      |  |
| 6.06            |                   | 5           | 0.872     | 0.8498           | 0.8942      | 0.87       | 0.85                | 0.89        | 0.008          | 2.05%       | 6.64%      |  |
| 10              |                   | 5           | 0.848     | 0.7792           | 0.9168      | 0.82       | 0.8                 | 0.93        | 0.02478        | 6.53%       | 9.21%      |  |
| 15              |                   | 5           | 0.75      | 0.6924           | 0.8076      | 0.74       | 0.71                | 0.82        | 0.02074        | 6.18%       | 19.7%      |  |
| Angular (Cori   | rected) Transfor  | med Sum     | mary      |                  |             |            |                     |             |                |             |            |  |
| C-%             | Control Type      | Count       | Mean      | 95% LCL          | 95% UCL     | Median     | Min                 | Max         | Std Err        | CV%         | %Effect    |  |
| 0               | Lab Control       | 5           | 1.318     | 1.231            | 1.405       | 1.303      | 1.217               | 1.397       | 0.03121        | 5.3%        | 0.0%       |  |
| 2.5             |                   | 5           | 1.196     | 1.172            | 1.221       | 1.187      | 1.173               | 1.217       | 0.008837       | 1.65%       | 9.22%      |  |
| 5               |                   | 5           | 1.193     | 1.041            | 1.346       | 1.233      | 0.9912              | 1.303       | 0.05485        | 10.28%      | 9.46%      |  |
| 6.06            |                   | 5           | 1.206     | 1.172            | 1.239       | 1.202      | 1.173               | 1.233       | 0.01199        | 2.23%       | 8.52%      |  |
| 10              |                   | 5           | 1.176     | 1.073            | 1.279       | 1.133      | 1.107               | 1.303       | 0.03715        | 7.06%       | 10.77%     |  |
| 15              |                   | 5           | 1.049     | 0.9805           | 1.117       | 1.036      | 1.002               | 1.133       | 0.02453        | 5.23%       | 20.43%     |  |
|                 |                   |             |           |                  |             |            |                     |             |                |             | , 0        |  |

Analyst: QA: AC9/29/17

21 Sep-17 18:05 (p 1 of 1)

Test Code: / 709 - 500 09-4269-1276/383053CC

#### **Echinoid Sperm Cell Fertilization Test 15C**

Nautilus Environmental (CA)

Start Date: End Date:

22 Sep-17

Species: Strongylocentrotus purpuratus Sample Code: 17- 1053

22 Sep-17

**Protocol**: EPA/600/R-95/136 (1995)

Sample Source: IDE Americas, Inc.

Sample Date: 21 Sep-17

Material: Facility Effluent

Sample Station: M-001 (Daily) (4(21 Sample)

| C-% | Code           | Rep | Pos | # Counted | # Fertilized                                                                                                         | Notes      |
|-----|----------------|-----|-----|-----------|----------------------------------------------------------------------------------------------------------------------|------------|
|     |                |     | 31  | 100       | 88<br>86<br>97                                                                                                       | JA 9128117 |
|     |                |     | 32  | 1         | 86                                                                                                                   |            |
|     |                |     | 33  |           | 97                                                                                                                   |            |
|     |                |     | 34  |           | 77<br>71<br>74                                                                                                       |            |
|     |                |     | 35  |           | 71                                                                                                                   |            |
|     |                |     | 36  |           | 74                                                                                                                   |            |
|     |                |     | 37  |           | 93<br>86<br>81<br>93                                                                                                 |            |
|     |                |     | 38  |           | 86                                                                                                                   |            |
|     |                |     | 39  |           | 81                                                                                                                   |            |
|     |                |     | 40  |           | 93                                                                                                                   |            |
|     |                |     | 41  |           | 88                                                                                                                   |            |
|     |                |     | 42  |           | 91                                                                                                                   |            |
|     |                |     | 43  |           | 85                                                                                                                   |            |
|     |                |     | 44  |           | 89                                                                                                                   |            |
|     |                |     | 45  |           | 89                                                                                                                   |            |
|     |                |     | 46  |           | 96                                                                                                                   |            |
|     |                |     | 47  |           | 80                                                                                                                   |            |
|     |                |     | 48  |           | 87                                                                                                                   |            |
|     |                |     | 49  |           | 71                                                                                                                   |            |
|     |                |     | 50  |           | 70                                                                                                                   |            |
|     | 100            |     | 51  |           | 93                                                                                                                   | ,          |
|     |                |     | 52  |           | 85                                                                                                                   |            |
|     |                |     | 53  |           | 89                                                                                                                   |            |
|     |                |     | 54  |           | 88<br>91<br>85<br>89<br>81<br>96<br>80<br>81<br>70<br>93<br>85<br>89<br>82<br>82<br>82<br>82<br>82<br>83<br>83<br>85 |            |
|     |                |     | 55  |           | 82                                                                                                                   |            |
|     |                |     | 56  |           | 82                                                                                                                   |            |
|     |                |     | 57  |           | OH3 88                                                                                                               |            |
|     |                |     | 58  |           | 93                                                                                                                   | -          |
|     |                |     | 59  |           | 85                                                                                                                   |            |
|     | and the second |     | 60  | <b>V</b>  | 86                                                                                                                   |            |

@ Jd 9/28/17

\_ QA:\_AC9/28/17

21 Sep-17 18:05 (p 1 of 1)

Test Code: 1709-5207 09-4269-1276/383053CC

#### **Echinoid Sperm Cell Fertilization Test 15C**

Nautilus Environmental (CA)

| Start Date: | 22 Sep-17 | Species: | Strongylocentrotus purpuratus | Sample Code:   | 17- 1053           |
|-------------|-----------|----------|-------------------------------|----------------|--------------------|
| End Date:   |           | •        | EPA/600/R-95/136 (1995)       | Sample Source: | IDE Americas, Inc. |

Sample Station: M-001 (Daily) 19/21 Second 1

| nple Date | e: 21 S | sep-17 | ,   | Materia   | il: Facility Efflu | ient    | Sample Station: M-001 (Dally) (4/2) School |
|-----------|---------|--------|-----|-----------|--------------------|---------|--------------------------------------------|
| C-%       | Code    | Rep    | Pos | # Counted | # Fertilized       |         | Notes                                      |
| 0         | LC      | 1      | 46  |           |                    |         |                                            |
| 0         | LC      | 2      | 33  |           |                    |         |                                            |
| 0         | LC      | 3      | 58  |           |                    |         |                                            |
| 0         | LC      | 4      | 40  | 100       | 90                 | 9122117 | RT                                         |
| 0         | LC      | 5      | 54  |           |                    |         |                                            |
| 2.5       |         | 1      | 38  |           |                    |         |                                            |
| 2.5       |         | 2      | 52  |           |                    |         |                                            |
| 2.5       |         | 3      | 31  |           |                    |         |                                            |
| 2.5       |         | 4      | 41  | 100       | 69                 | 9122/17 | RT                                         |
| 2.5       |         | 5      | 32  |           |                    |         |                                            |
| 5         |         | 1      | 45  |           |                    |         |                                            |
| 5         |         | 2      | 42  | 100       | 85                 | 9122/17 | RT                                         |
| 5         |         | 3      | 43  |           |                    |         | w                                          |
| 5         |         | 4      | 50  |           |                    |         |                                            |
| 5         |         | 5      | 37  |           |                    |         |                                            |
| 6.06      |         | 1      | 53  | 100       | 82                 | 9122/17 | FT                                         |
| 6.06      |         | 2      | 44  |           |                    |         |                                            |
| 6.06      |         | 3      | 59  |           |                    |         |                                            |
| 6.06      |         | 4      | 60  |           |                    |         |                                            |
| 6.06      |         | 5      | 48  |           |                    |         |                                            |
| 10        |         | 1      | 39  |           |                    |         |                                            |
| 10        |         | 2      | 55  |           |                    |         |                                            |
| 10        |         | 3      | 57  |           |                    |         |                                            |
| 10        |         | 4      | 47  | 100       | 81                 | 9122117 | RT                                         |
| 10        |         | 5      | 51  |           |                    |         |                                            |
| 15        |         | 1      | 35  |           |                    |         |                                            |
| 15        |         | 2      | 36  |           |                    |         |                                            |
| 15        |         | 3      | 34  | 100       | 77                 | 9122/17 | RT                                         |
| 15        |         | 4      | 49  |           |                    |         |                                            |
| 15        |         | 5      | 56  |           |                    |         |                                            |

QC: 66

#### Marine Chronic Bioassay

### **Water Quality Measurements**

| C | ı | i | ^ | m | ٠í | ŀ  |  |
|---|---|---|---|---|----|----|--|
| v | ı | ľ | c | ı | Ų  | L. |  |

IDE

Test Species: S. purpuratus

Sample ID:

M-001 (9/21 Sample)

Start Date/Time: 9/22/2017 | -(50

Sample Log No.:

End Date/Time: 9/22/2017

Dilutions made by:

|                 |              |               | Analyst:          | CG                  |
|-----------------|--------------|---------------|-------------------|---------------------|
|                 |              | initiai R     | eadings           |                     |
| Concentration % | DO<br>(mg/L) | pH<br>(units) | Salinity<br>(ppt) | Temperature<br>(°C) |
| Lab Control     | 7.6          | 8.09          | 33.4              | 14.3 0              |
| 2.5             | 7.5          | 8.07          | 33.3              | 143                 |
| 5.0             | 7.8          | 8.07          | 33. U             | 14.3                |
| 6.06            | 7.9          | 8.08          | 33.6.             | 14.3                |
| 10              | 8.0          | 8.08          | 33 5              | 14.3                |
| 15              | 8.2          | 6.06          | 33.5              | 14.3                |
|                 |              |               |                   |                     |
|                 |              |               |                   |                     |

| Comments: | (A) remperature takes | n from surrogate vial. BAO Q18 9/20/17 |  |
|-----------|-----------------------|----------------------------------------|--|
| QC Check: | AC9/28/17             | Final Review: 6 10/2/17                |  |

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

| ml Sperm Stock 50 40 30 20 10 5.0 2.5 1.25 ml Seawater 0.0 10 20 30 40 45 47.5 48.75  Time Rangefinder Ratio: Fert. Unfert.  Sperm Added (100 μl): 14 β 50 1 63 3 7 Eggs Added (0.5 ml): 14 2 4 8  2  Test Ended: 1442 4 8  2  NOTE: Choose a sperm-to-egg ratio that results in fertilization between 80 and 90 percent. If more than one concentration is within this range, choose the ratio closest to 90 percent unless professional judgment dictates consideration of other factors (e.g., organism health, stage of reproductive season, site conditions).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Marine Chronic Bio                                           | assay                                     |                                 |                               | Ecl                              | ninoderm          | Sperm-Cell                      | Fertilization              | on Worksheet                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------|---------------------------------|-------------------------------|----------------------------------|-------------------|---------------------------------|----------------------------|---------------------------------------|
| Tech initials: Injection Time: INJECT   INJECTION   IN | Sample ID:                                                   | Daily<br>1709                             | M-001<br>S207                   | 19/21:                        | <u>-</u><br><u>Sa</u> mple)<br>- |                   | End Date/Ti<br>Spec             | me: <u>9/22/20</u> :       | 17/1530<br>irpurates                  |
| Eggs Counted:    GS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              | (G<br>1400                                |                                 |                               |                                  |                   |                                 |                            |                                       |
| (larget counts of 80 eggs per vertical pass on Sedgwick-Rafter slide for a final density of 4000 eggs/ml)    A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sperm Absorbance at 4                                        | 00 nm:                                    | 120 (1                          | arget range of                | 0.8 - 1.0 fc                     | r density of      | f 4x10 <sup>6</sup> sperm/      | ml)                        |                                       |
| Initial density:    Ho 10   eggs/ml   =   1.17   dilution factor   egg stock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Eggs Counted:                                                | 92                                        | (target co                      | unts of 80 eggs               | per vertical                     | pass on Sed       |                                 |                            |                                       |
| Rangefinder Test: 2000:1 1600:1 1200:1 800:1 400:1 200:1 100:1 50:1 125 ml Sperm Stock 50 40 30 20 10 5.0 2.5 1.25 ml Seawater 0.0 10 20 30 40 45 47.5 48.75  Sperm Added (100 µl): 14 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Final density:                                               | 4000 e                                    | ggs/ml                          | - 1.0 par                     | t egg stock<br>ts seawate        | s                 | eawater                         | 17 m                       | I                                     |
| Rangefinder Test: 2000:1 1600:1 1200:1 800:1 400:1 200:1 100:1 50:1 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Prepare the embryo stoc<br>existing stock (1 part) ar        | ck according to the<br>nd 125 ml of dilut | ne calculated<br>ion water (1.: | dilution factor<br>25 parts). | ·. For exam                      | ple, if the c     | lilution factor is              | s 2.25, use 1              | 00 ml of                              |
| Sperm Added (100 µl): 146 30.1 63 37  Eggs Added (0.5 ml): 142 100.1 4142 4.8  Test Ended: 1442 4.8  NOTE: Choose a sperm-to-egg ratio that results in fertilization between 80 and 90 percent. If more than one concentration is within this range, choose the ratio closest to 90 percent unless professional judgment dictates consideration of other factors (e.g., organism health, stage of reproductive season, site conditions).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Rangefinder Test:<br>ml Sperm Stock<br>ml Seawater           | 50<br>0.0                                 | 40<br>10                        | 30<br>20                      | 800:1<br>20<br>30                | 400:1<br>10<br>40 | 5.0<br>45                       | 2.5                        | 1.25                                  |
| organism health, stage of reproductive season, site conditions).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sperm Added (100 µl):<br>Eggs Added (0.5 ml):<br>Test Ended: | 1418                                      |                                 | 30:1                          | 67                               | 3 3               | 7                               |                            |                                       |
| Definition Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ins range, choose the                                        | rano ciosest to                           | 90 percent                      | uniess profes                 | ssional judg                     | ment dicta        | . If more than<br>tes considera | one concen<br>tion of othe | tration is within<br>r factors (e.g., |

| Time   QC1   QV   IO   IO   Eggs Added (0.5 ml):   1510   QC2   QC2 | <u>Definitive Test</u> |              | Sperm:Egg Ratio Us                    | ed: <u>100</u> ' |                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------|---------------------------------------|------------------|----------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Eggs Added (0.5 ml):   | 1450<br>1570 | QC2<br>Egg Control 1<br>Egg Control 2 | 40               | 10<br>5<br>100 |

QC Check: 4 9/38/11 Final Review: 45 10/2/17

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

Appendix B

Sample Receipt Information

Nautilus Environmental 4340 Vandever Avenue San Diego, CA 92120

| Client:         | IDE                       |
|-----------------|---------------------------|
| Sample ID:      | Daily M-001 (9/21 sample) |
| Test ID No(s).: | 1709-S207                 |

| Sample (A, B, C):                      | M-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |    |     |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|-----|
| Log-in No. (17-)000):                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |    |     |
| Sample Collection Date & Time:         | 9/21/17 0800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |    |     |
| Sample Receipt Date & Time:            | 9/22/17/255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |    |     |
| Number of Containers & Container Type: | 141 wbi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |    |     |
| Approx. Total Volume Received (L):     | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |    |     |
| Check-in Temperature (°C)              | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |    |     |
| Temperature OK? <sup>1</sup>           | Y N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Y N | YN | Y N |
| DO (mg/L)                              | 9.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |    |     |
| pH (units)                             | 7.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |    |     |
| Conductivity (μS/cm)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |    |     |
| Salinity (ppt)                         | 32.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |    |     |
| Alkalinity (mg/L) <sup>2</sup>         | 136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |    |     |
| Hardness (mg/L) <sup>2, 3</sup>        | Constitution of the last of th |     |    |     |
| Total Chlorine (mg/L)                  | 20.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |    |     |
| Technician Initials                    | BO/DM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |    |     |

|                      | Control/Dilution Water: 8:2 Lab SW / Lab ART Other:  Alkalinity: Hardness or Salinity: Hardness or Salinity:                |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Test Performed:      | Control/Dilution Water: 8:2 / Lab SW / Lab ART Other:  Alkalinity: Hardness or Salinity:  Hardness or Salinity:             |
| Test Performed:      | Control/Dilution Water: 8:2 / Lab SW / Lab ART Other:  Alkalinity: Hardness or Salinity:  Hardness or Salinity:             |
| Notes:               | <br>Ild be 0-6°C, if received more than 24 hours past collection time.  If for freshwater samples only, NA = Not Applicable |
| Additional Comments: |                                                                                                                             |

## Sample Check-In Information

| te no cdor                     | clear, o | dorless, l     | no det   |
|--------------------------------|----------|----------------|----------|
| :                              |          |                |          |
|                                |          |                |          |
| COC Complete (Y/N)?            | ?        |                |          |
| A \ B _ C                      |          |                |          |
|                                |          |                |          |
| Filtration? Y (N               |          |                |          |
| Pore Size:                     |          | -              |          |
| Organisms                      | or       | Debris         |          |
|                                | - Jana   |                |          |
| Salinity Adjustment?           |          | <b>T</b>       | t met.   |
| Test:                          | Source:  | Targe          | • •      |
| Test:                          | Source:  | Targe          |          |
| Test: pH Adjustment? Y         | Source:  | Targe          | r hhr.   |
| ph Adjustmentr 1               |          | В              | С        |
| Initial pH:                    |          |                |          |
| mount of HCI added:            |          |                |          |
| Final pH:                      |          |                |          |
| Cl <sub>2</sub> Adjustment? Y  | 7        |                |          |
| Oly Adjustment:                | <u></u>  | 8              | С        |
| Initial Free Cl <sub>2</sub> : |          |                |          |
| STS added:                     |          |                |          |
| Final Free Cl <sub>2</sub> :   |          |                |          |
|                                |          |                |          |
| Sample Aeration? Y             | N A      | В              | С        |
| Initial D.O.                   |          |                |          |
| Duration & Rate                |          |                |          |
| Final D.O.                     |          |                |          |
|                                |          |                |          |
| Subsamples for Add             |          | mistry Require | ed? Y(N) |
| NH3 Othe<br>Tech Initials      | r        |                |          |
| recirimitats /                 |          |                |          |
|                                | QC CI    | neck: AC9      | 128/17   |
|                                | Final Re | view: & W      | 12/17    |

Appendix C

Chain-of-Custody Form



| PAILY |    |
|-------|----|
|       | С  |
|       | Ε  |
|       | W  |
|       | Na |
|       | А  |
|       |    |

 CDP laoratory:
 Turn Around Time

 Entahlpy Laboratory:
 Normal:
 \_\_\_\_

 WECK Laboratory:
 RUSH (24 hr):
 \_\_\_\_\_

 Nautilus:
 \_\_\_\_\_
 3 Days:
 \_\_\_\_\_

 AIM:
 \_\_\_\_\_
 5 Days:
 \_\_\_\_\_

 Other:
 ??? Days
 \_\_\_\_\_\_

| at one hour intervals. Sample collected to fulfill daily NPDES requirement. Sample is to be run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NOTES:                                  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--|
| unadjusted. Start: 9/20/17 @ 8:00, End: 9/21/17 @ 8:00 KC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |  |
| inadjusted. Start: 9/20/17 @ 8:00, End: 9/21/17 @ 8:00 KC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |  |
| Glass=G Plastic=P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |  |
| Yes=Y No=N Acid=A Base=B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |  |
| Glass=G Plastic=P  Yes=Y No=N Acid=A Base=B  Drinking Water=DW Seawater=SW Soil=S  Sample ID  Date  Time  Sample Sample Sample ID  Type  T |                                         |  |
| Drinking Water=DW Seawater=SW Soil=S  Sample ID  Date  Time  Sample   Sample   Container   2   2   2   2   2   2   2   2   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |  |
| Type Type G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |  |
| M-001 (17- 2872) 9/20-21/2017 8:00-8:00 SW N 4L CUBIE X TDS - 31.88 ppt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | c, EC - 49.64 mS/cm                     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |  |
| Relinquished By: Date: Time: Received By Date: Time: Sample Condition Upon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n Receipt:                              |  |
| Valar   9/32/17 100   2,9/3/11/2   x   1ced   Ambient or 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5°c                                     |  |
| 9/22/19/23 /AMID 9/22/17 1255   Iced Ambient or_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | °C                                      |  |

naudius 12:17-1053

Appendix D

Reference Toxicant Test Data and Statistical Analyses

# **CETIS Summary Report**

Report Date:

05 Oct-17 10:29 (p 1 of 1)

Test Code:

170922sprt | 20-3341-5102

|                                                            |                                                         |             |                                        |                          |                                                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                        |               |                            |                      | , , - , -  |
|------------------------------------------------------------|---------------------------------------------------------|-------------|----------------------------------------|--------------------------|--------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------|---------------|----------------------------|----------------------|------------|
| Echinoid Spe                                               | rm Cell Fertiliza                                       | tion Test 1 | 5C                                     |                          |                                                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                        |               | Nautilus                   | s Environm           | ental (CA) |
| Batch ID:<br>Start Date:<br>Ending Date:<br>Duration:      | 06-1631-0929<br>22 Sep-17 14:5<br>22 Sep-17 15:3<br>40m | 0 Pro       | st Type:<br>otocol:<br>ecies:<br>urce: | EPA                      | /600/R-95/<br>ngylocentro                              | 136 (1995)<br>itus purpurai | tus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | Analyst:<br>Diluent:<br>Brine:<br>Age: |               | ural Seawate<br>Applicable | er                   |            |
| Sample ID:<br>Sample Date:<br>Receive Date:<br>Sample Age: | 22 Sep-17                                               | Soi         | de:<br>terial:<br>urce:<br>tion:       | Copp<br>Refe             | 022sprt<br>per chloride<br>rence Toxio<br>per Chloride | cant                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | Client:<br>Project:                    | Inte          | rnal                       |                      |            |
| Comparison S                                               | Summary                                                 |             |                                        |                          |                                                        |                             | No balance Acceptance Address of the Acceptance Accepta |      |                                        |               |                            |                      |            |
| Analysis ID                                                | Endpoint                                                |             | NOEL                                   | L                        | LOEL                                                   | TOEL                        | PMSD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TU   | Me                                     | thod          |                            |                      |            |
| 10-5962-0866                                               | Fertilization Rat                                       | е           | <10                                    |                          | 10                                                     | NA                          | 15.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | Du                                     | nnett N       | lultiple Com               | parison Tes          | t          |
| Point Estimat                                              | e Summary                                               |             |                                        |                          |                                                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                        |               |                            |                      |            |
| Analysis ID                                                | Endpoint                                                |             | Level                                  | i                        | μg/L                                                   | 95% LCL                     | 95% UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TU   | Me                                     | thod          |                            |                      |            |
| 00-7052-6214                                               | Fertilization Rat                                       | е           | EC50                                   | )                        | 54.61                                                  | 51.52                       | 57.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | Tri                                    | mmed          | Spearman-k                 | Kärber               |            |
| Test Acceptak                                              | oility                                                  |             |                                        |                          |                                                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                        |               |                            |                      |            |
| Analysis ID                                                | Endpoint                                                |             | Attrik                                 | oute                     |                                                        | Test Stat                   | TAC Limi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ts   | O۱                                     | erlap         | Decision                   |                      |            |
| 00-7052-6214                                               | Fertilization Rat                                       | e           | Contr                                  | trol Resp 0.888 0.7 - NL |                                                        |                             | Ye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s    | Passes A                               | cceptability  | Criteria                   |                      |            |
| 10-5962-0866                                               | Fertilization Rat                                       | e           | Contr                                  | ol Res                   | sp                                                     | 0.888                       | 0.7 - NL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | Ye                                     | s             | Passes A                   | cceptability         | Criteria   |
| 10-5962-0866                                               | Fertilization Rat                                       | е           | PMSI                                   | D                        |                                                        | 0.1515                      | NL - 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | No.                                    | No Passes Acc |                            | ceptability Criteria |            |
| Fertilization R                                            | Rate Summary                                            |             |                                        |                          |                                                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                        |               |                            |                      |            |
| C-µg/L                                                     | Control Type                                            | Count       | Mean                                   | า                        | 95% LCL                                                | 95% UCL                     | Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Max  | ∢ St                                   | d Err         | Std Dev                    | CV%                  | %Effect    |
| 0                                                          | Lab Control                                             | 5           | 0.888                                  | 3                        | 0.8308                                                 | 0.9452                      | 0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.93 | 3 0.0                                  | 2059          | 0.04604                    | 5.19%                | 0.0%       |
| 10                                                         |                                                         | 5           | 0.69                                   |                          | 0.5918                                                 | 0.7882                      | 0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.79 |                                        | 3536          | 0.07906                    | 11.46%               | 22.3%      |
| 20                                                         |                                                         | 5           | 0.772                                  | <u> </u>                 | 0.6547                                                 | 0.8893                      | 0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.8  | 5 0.0                                  | )4224         | 0.09445                    | 12.23%               | 13.06%     |
| 40                                                         |                                                         | 5           | 0.638                                  | 3                        | 0.4982                                                 | 0.7778                      | 0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.7  |                                        | 5034          | 0.1126                     | 17.64%               | 28.15%     |
| 80                                                         |                                                         | 5           | 0.25                                   |                          | 0.05784                                                | 0.4422                      | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.4  |                                        | 06921         | 0.1548                     | 61.9%                | 71.85%     |
| 160                                                        |                                                         | 5           | 0                                      |                          | 0                                                      | 0                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0    | 0                                      |               | 0                          |                      | 100.0%     |
| Fertilization F                                            | Rate Detail                                             |             |                                        |                          |                                                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                        |               |                            |                      |            |
| C-µg/L                                                     | Control Type                                            | Rep 1       | Rep 2                                  | 2                        | Rep 3                                                  | Rep 4                       | Rep 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -    |                                        |               |                            |                      |            |
| 0                                                          | Lab Control                                             | 0.93        | 0.83                                   |                          | 0.85                                                   | 0.9                         | 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                                        |               |                            |                      |            |
| 10                                                         |                                                         | 0.71        | 0.65                                   |                          | 0.72                                                   | 0.58                        | 0.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                                        |               |                            |                      |            |
| 20                                                         |                                                         | 0.85        | 0.84                                   |                          | 0.65                                                   | 0.69                        | 0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                                        |               |                            |                      |            |
| 40                                                         |                                                         | 0.75        | 0.52                                   |                          | 0.64                                                   | 0.75                        | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                                        |               |                            |                      |            |
| 80                                                         |                                                         | 0.05        | 0.12                                   |                          | 0.4                                                    | 0.35                        | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                                        |               |                            |                      |            |
| 160                                                        |                                                         | 0           | 0                                      |                          | 0                                                      | 0                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                                        |               |                            |                      |            |
|                                                            |                                                         |             |                                        |                          |                                                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                        |               |                            |                      |            |

Analyst: 1 QA: 4 PT 10 5 17

Report Date: Test Code:

05 Oct-17 10:28 (p 1 of 2) 170922sprt | 20-3341-5102

|                                                                       |                                   |                                                           |                                                                                          |                                                                                             |                                                                                           |                                                                               | Test                                                                          |                                                                            |                                                                                                      |                                                                                         | 3341-5102                                                                                   |
|-----------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Echinoid Spe                                                          | erm Cell Fertilizat               | tion Test 1                                               | iC                                                                                       |                                                                                             |                                                                                           |                                                                               |                                                                               |                                                                            | Nautilus                                                                                             | Environm                                                                                | ental (CA)                                                                                  |
| Analysis ID:<br>Analyzed:                                             | 10-5962-0866<br>05 Oct-17 10:28   |                                                           |                                                                                          | ilization Rate                                                                              |                                                                                           | ments                                                                         |                                                                               | S Version:<br>ial Results:                                                 | CETISv1.8<br>Yes                                                                                     | 8.7                                                                                     |                                                                                             |
|                                                                       |                                   |                                                           | J                                                                                        | Trials                                                                                      | Seed                                                                                      |                                                                               | PMSD                                                                          | NOEL                                                                       | LOEL                                                                                                 | TOEL                                                                                    | TU                                                                                          |
| Data Transfo<br>Angular (Corre                                        |                                   | Zeta<br>NA                                                | Alt Hyp<br>C > T                                                                         | NA                                                                                          | NA                                                                                        |                                                                               | 15.2%                                                                         | <10                                                                        | 10                                                                                                   | NA                                                                                      |                                                                                             |
| Angulai (Com                                                          | ected)                            | IVA                                                       | 0 7 1                                                                                    | 147 (                                                                                       |                                                                                           |                                                                               |                                                                               |                                                                            |                                                                                                      |                                                                                         |                                                                                             |
| Dunnett Mult                                                          | tiple Comparison                  | Test                                                      |                                                                                          |                                                                                             |                                                                                           |                                                                               |                                                                               |                                                                            |                                                                                                      |                                                                                         |                                                                                             |
| Control                                                               | vs C-µg/L                         |                                                           | Test Stat                                                                                | Critical                                                                                    |                                                                                           | P-Value                                                                       | P-Type                                                                        | Decision(                                                                  |                                                                                                      |                                                                                         |                                                                                             |
| Lab Control                                                           | 10*                               |                                                           | 3.164                                                                                    | 2.305                                                                                       | 0.184 8                                                                                   | 0.0084                                                                        | CDF                                                                           | Significant                                                                |                                                                                                      |                                                                                         |                                                                                             |
|                                                                       | 20                                |                                                           | 1.952                                                                                    | 2.305                                                                                       | 0.184 8                                                                                   | 0.0957                                                                        | CDF                                                                           | •                                                                          | icant Effect                                                                                         |                                                                                         |                                                                                             |
|                                                                       | 40*                               |                                                           | 3.844                                                                                    | 2.305                                                                                       | 0.184 8                                                                                   | 0.0018                                                                        | CDF                                                                           | Significant                                                                | Effect                                                                                               |                                                                                         |                                                                                             |
|                                                                       | 80*                               |                                                           | 9.199                                                                                    | 2.305                                                                                       | 0.184 8                                                                                   | <0.0001                                                                       | CDF                                                                           | Significant                                                                | Effect                                                                                               |                                                                                         |                                                                                             |
| ANOVA Table                                                           | е                                 |                                                           |                                                                                          |                                                                                             |                                                                                           |                                                                               |                                                                               |                                                                            |                                                                                                      |                                                                                         |                                                                                             |
| Source                                                                | Sum Squa                          | ares                                                      | Mean Squ                                                                                 | iare                                                                                        | DF                                                                                        | F Stat                                                                        | P-Value                                                                       | Decision(                                                                  | α:5%)                                                                                                |                                                                                         |                                                                                             |
| Between                                                               | 1.500668                          |                                                           | 0.375167                                                                                 |                                                                                             | 4                                                                                         | 23.64                                                                         | <0.0001                                                                       | Significant                                                                | Effect                                                                                               |                                                                                         |                                                                                             |
| Error                                                                 | 0.3174572                         | 2                                                         | 0.0158728                                                                                | 36                                                                                          | 20                                                                                        |                                                                               |                                                                               |                                                                            |                                                                                                      |                                                                                         |                                                                                             |
| Total                                                                 | 1.818125                          |                                                           |                                                                                          |                                                                                             | 24                                                                                        |                                                                               |                                                                               |                                                                            |                                                                                                      |                                                                                         |                                                                                             |
| Distributiona                                                         | al Tests                          |                                                           |                                                                                          |                                                                                             |                                                                                           |                                                                               |                                                                               |                                                                            |                                                                                                      |                                                                                         |                                                                                             |
| Attribute                                                             | Test                              |                                                           |                                                                                          | Test Stat                                                                                   | Critical                                                                                  | P-Value                                                                       | Decision(                                                                     | α:1%)                                                                      |                                                                                                      |                                                                                         |                                                                                             |
| Variances                                                             | Bartlett E                        | quality of V                                              | ariance                                                                                  | 4.733                                                                                       | 13.28                                                                                     | 0.3158                                                                        | Equal Var                                                                     | iances                                                                     |                                                                                                      |                                                                                         |                                                                                             |
| Distribution                                                          | Shapiro-\                         | Wilk W Norr                                               | nality                                                                                   | 0.9437                                                                                      | 0.8877                                                                                    | 0.1799                                                                        | Normal Di                                                                     | stribution                                                                 |                                                                                                      |                                                                                         |                                                                                             |
| Fertilization                                                         | Rate Summary                      |                                                           |                                                                                          |                                                                                             |                                                                                           |                                                                               |                                                                               |                                                                            |                                                                                                      |                                                                                         |                                                                                             |
| C-µg/L                                                                | Control Type                      |                                                           |                                                                                          |                                                                                             |                                                                                           |                                                                               |                                                                               |                                                                            |                                                                                                      |                                                                                         |                                                                                             |
| 0                                                                     |                                   | Count                                                     | Mean                                                                                     | 95% LCL                                                                                     | 95% UCL                                                                                   | Median                                                                        | Min                                                                           | Max                                                                        | Std Err                                                                                              | CV%                                                                                     | %Effect                                                                                     |
| 1 1 2                                                                 | Lab Control                       |                                                           | <b>Mean</b><br>0.888                                                                     | 95% LCL<br>0.8308                                                                           | 95% UCL<br>0.9452                                                                         | Median<br>0.9                                                                 | Min<br>0.83                                                                   | Max<br>0.93                                                                | <b>Std Err</b> 0.02059                                                                               | CV%<br>5.19%                                                                            | %Effect<br>0.0%                                                                             |
| _                                                                     | Lab Control                       | 5                                                         |                                                                                          |                                                                                             |                                                                                           |                                                                               | -                                                                             |                                                                            |                                                                                                      |                                                                                         |                                                                                             |
| 10                                                                    | Lab Control                       | 5<br>5                                                    | 0.888                                                                                    | 0.8308                                                                                      | 0.9452                                                                                    | 0.9                                                                           | 0.83                                                                          | 0.93                                                                       | 0.02059                                                                                              | 5.19%                                                                                   | 0.0%                                                                                        |
| 10<br>20                                                              | Lab Control                       | 5                                                         | 0.888<br>0.69                                                                            | 0.8308<br>0.5918                                                                            | 0.9452<br>0.7882                                                                          | 0.9<br>0.71                                                                   | 0.83<br>0.58                                                                  | 0.93<br>0.79                                                               | 0.02059<br>0.03536                                                                                   | 5.19%<br>11.46%                                                                         | 0.0%                                                                                        |
| 10<br>20<br>40                                                        | Lab Control                       | 5<br>5<br>5<br>5                                          | 0.888<br>0.69<br>0.772<br>0.638                                                          | 0.8308<br>0.5918<br>0.6547                                                                  | 0.9452<br>0.7882<br>0.8893                                                                | 0.9<br>0.71<br>0.83                                                           | 0.83<br>0.58<br>0.65                                                          | 0.93<br>0.79<br>0.85                                                       | 0.02059<br>0.03536<br>0.04224                                                                        | 5.19%<br>11.46%<br>12.23%                                                               | 0.0%<br>22.3%<br>13.06%                                                                     |
| 10<br>20                                                              | Lab Control                       | 5<br>5<br>5                                               | 0.888<br>0.69<br>0.772                                                                   | 0.8308<br>0.5918<br>0.6547<br>0.4982                                                        | 0.9452<br>0.7882<br>0.8893<br>0.7778                                                      | 0.9<br>0.71<br>0.83<br>0.64                                                   | 0.83<br>0.58<br>0.65<br>0.52                                                  | 0.93<br>0.79<br>0.85<br>0.75                                               | 0.02059<br>0.03536<br>0.04224<br>0.05034                                                             | 5.19%<br>11.46%<br>12.23%<br>17.64%                                                     | 0.0%<br>22.3%<br>13.06%<br>28.15%                                                           |
| 10<br>20<br>40<br>80<br>160                                           | Lab Control rrected) Transfor     | 5<br>5<br>5<br>5<br>5<br>5                                | 0.888<br>0.69<br>0.772<br>0.638<br>0.25                                                  | 0.8308<br>0.5918<br>0.6547<br>0.4982<br>0.05784                                             | 0.9452<br>0.7882<br>0.8893<br>0.7778<br>0.4422                                            | 0.9<br>0.71<br>0.83<br>0.64<br>0.33                                           | 0.83<br>0.58<br>0.65<br>0.52<br>0.05                                          | 0.93<br>0.79<br>0.85<br>0.75<br>0.4                                        | 0.02059<br>0.03536<br>0.04224<br>0.05034<br>0.06921                                                  | 5.19%<br>11.46%<br>12.23%<br>17.64%                                                     | 0.0%<br>22.3%<br>13.06%<br>28.15%<br>71.85%                                                 |
| 10<br>20<br>40<br>80<br>160                                           |                                   | 5<br>5<br>5<br>5<br>5<br>5                                | 0.888<br>0.69<br>0.772<br>0.638<br>0.25                                                  | 0.8308<br>0.5918<br>0.6547<br>0.4982<br>0.05784                                             | 0.9452<br>0.7882<br>0.8893<br>0.7778<br>0.4422                                            | 0.9<br>0.71<br>0.83<br>0.64<br>0.33                                           | 0.83<br>0.58<br>0.65<br>0.52<br>0.05                                          | 0.93<br>0.79<br>0.85<br>0.75<br>0.4                                        | 0.02059<br>0.03536<br>0.04224<br>0.05034<br>0.06921<br>0                                             | 5.19%<br>11.46%<br>12.23%<br>17.64%<br>61.9%                                            | 0.0%<br>22.3%<br>13.06%<br>28.15%<br>71.85%<br>100.0%                                       |
| 10<br>20<br>40<br>80<br>160<br>Angular (Co                            | rrected) Transfor                 | 5<br>5<br>5<br>5<br>5<br>5<br>5                           | 0.888<br>0.69<br>0.772<br>0.638<br>0.25<br>0                                             | 0.8308<br>0.5918<br>0.6547<br>0.4982<br>0.05784<br>0                                        | 0.9452<br>0.7882<br>0.8893<br>0.7778<br>0.4422                                            | 0.9<br>0.71<br>0.83<br>0.64<br>0.33                                           | 0.83<br>0.58<br>0.65<br>0.52<br>0.05                                          | 0.93<br>0.79<br>0.85<br>0.75<br>0.4                                        | 0.02059<br>0.03536<br>0.04224<br>0.05034<br>0.06921<br>0                                             | 5.19%<br>11.46%<br>12.23%<br>17.64%<br>61.9%<br>CV%<br>5.9%                             | 0.0%<br>22.3%<br>13.06%<br>28.15%<br>71.85%<br>100.0%<br>%Effect<br>0.0%                    |
| 10<br>20<br>40<br>80<br>160<br>Angular (Cor                           | rrected) Transfor<br>Control Type | 5<br>5<br>5<br>5<br>5<br>5<br>rmed Sumn                   | 0.888<br>0.69<br>0.772<br>0.638<br>0.25<br>0                                             | 0.8308<br>0.5918<br>0.6547<br>0.4982<br>0.05784<br>0                                        | 0.9452<br>0.7882<br>0.8893<br>0.7778<br>0.4422<br>0                                       | 0.9<br>0.71<br>0.83<br>0.64<br>0.33<br>0                                      | 0.83<br>0.58<br>0.65<br>0.52<br>0.05<br>0                                     | 0.93<br>0.79<br>0.85<br>0.75<br>0.4<br>0                                   | 0.02059<br>0.03536<br>0.04224<br>0.05034<br>0.06921<br>0                                             | 5.19%<br>11.46%<br>12.23%<br>17.64%<br>61.9%                                            | 0.0%<br>22.3%<br>13.06%<br>28.15%<br>71.85%<br>100.0%<br>%Effect<br>0.0%<br>20.42%          |
| 10<br>20<br>40<br>80<br>160<br>Angular (Cor<br>C-µg/L<br>0            | rrected) Transfor<br>Control Type | 5<br>5<br>5<br>5<br>5<br>5<br>med Sumn<br>Count           | 0.888<br>0.69<br>0.772<br>0.638<br>0.25<br>0                                             | 0.8308<br>0.5918<br>0.6547<br>0.4982<br>0.05784<br>0                                        | 0.9452<br>0.7882<br>0.8893<br>0.7778<br>0.4422<br>0<br>95% UCL<br>1.325                   | 0.9<br>0.71<br>0.83<br>0.64<br>0.33<br>0                                      | 0.83<br>0.58<br>0.65<br>0.52<br>0.05<br>0                                     | 0.93<br>0.79<br>0.85<br>0.75<br>0.4<br>0                                   | 0.02059<br>0.03536<br>0.04224<br>0.05034<br>0.06921<br>0<br>Std Err<br>0.03259                       | 5.19%<br>11.46%<br>12.23%<br>17.64%<br>61.9%<br>CV%<br>5.9%                             | 0.0%<br>22.3%<br>13.06%<br>28.15%<br>71.85%<br>100.0%<br>%Effect<br>0.0%<br>20.42%<br>12.6% |
| 10<br>20<br>40<br>80<br>160<br>Angular (Co<br>C-µg/L<br>0<br>10<br>20 | rrected) Transfor<br>Control Type | 5<br>5<br>5<br>5<br>5<br>5<br>med Sumn<br>Count<br>5      | 0.888<br>0.69<br>0.772<br>0.638<br>0.25<br>0<br>mary<br>Mean<br>1.235<br>0.9827          | 0.8308<br>0.5918<br>0.6547<br>0.4982<br>0.05784<br>0<br>95% LCL<br>1.144<br>0.876           | 0.9452<br>0.7882<br>0.8893<br>0.7778<br>0.4422<br>0<br>95% UCL<br>1.325<br>1.089          | 0.9<br>0.71<br>0.83<br>0.64<br>0.33<br>0<br>Median<br>1.249<br>1.002          | 0.83<br>0.58<br>0.65<br>0.52<br>0.05<br>0<br>Min<br>1.146<br>0.8657           | 0.93<br>0.79<br>0.85<br>0.75<br>0.4<br>0<br>Max<br>1.303<br>1.095          | 0.02059<br>0.03536<br>0.04224<br>0.05034<br>0.06921<br>0<br>Std Err<br>0.03259<br>0.03845            | 5.19%<br>11.46%<br>12.23%<br>17.64%<br>61.9%<br>CV%<br>5.9%<br>8.75%<br>10.3%<br>12.76% | 0.0%<br>22.3%<br>13.06%<br>28.15%<br>71.85%<br>100.0%<br>%Effect<br>0.0%<br>20.42%          |
| 10<br>20<br>40<br>80<br>160<br>Angular (Cod<br>C-µg/L<br>0            | rrected) Transfor<br>Control Type | 5<br>5<br>5<br>5<br>5<br>5<br>med Sumn<br>Count<br>5<br>5 | 0.888<br>0.69<br>0.772<br>0.638<br>0.25<br>0<br>mary<br>Mean<br>1.235<br>0.9827<br>1.079 | 0.8308<br>0.5918<br>0.6547<br>0.4982<br>0.05784<br>0<br>95% LCL<br>1.144<br>0.876<br>0.9412 | 0.9452<br>0.7882<br>0.8893<br>0.7778<br>0.4422<br>0<br>95% UCL<br>1.325<br>1.089<br>1.217 | 0.9<br>0.71<br>0.83<br>0.64<br>0.33<br>0<br>Median<br>1.249<br>1.002<br>1.146 | 0.83<br>0.58<br>0.65<br>0.52<br>0.05<br>0<br>Min<br>1.146<br>0.8657<br>0.9377 | 0.93<br>0.79<br>0.85<br>0.75<br>0.4<br>0<br>Max<br>1.303<br>1.095<br>1.173 | 0.02059<br>0.03536<br>0.04224<br>0.05034<br>0.06921<br>0<br>Std Err<br>0.03259<br>0.03845<br>0.04973 | 5.19%<br>11.46%<br>12.23%<br>17.64%<br>61.9%<br>CV%<br>5.9%<br>8.75%<br>10.3%           | 0.0%<br>22.3%<br>13.06%<br>28.15%<br>71.85%<br>100.0%<br>%Effect<br>0.0%<br>20.42%<br>12.6% |

**Echinoid Sperm Cell Fertilization Test 15C** 

Report Date:

05 Oct-17 10:29 (p 2 of 2)

Test Code: 170922sprt | 20-3341-5102

Nautilus Environmental (CA)

Analysis ID: 10-5962-0866 Endpoint: Fertilization Rate CETIS Version: CETISv1.8.7



Report Date: Test Code:

05 Oct-17 10:29 (p 1 of 1)

170922sprt | 20-3341-5102

**Echinoid Sperm Cell Fertilization Test 15C** 

Nautilus Environmental (CA)

Analysis ID: Analyzed:

00-7052-6214 05 Oct-17 10:28

Endpoint: Fertilization Rate Analysis:

Trimmed Spearman-Kärber

CETIS Version: Official Results:

CETISv1.8.7

Yes

| Trimmed Spearman-Kärber Estimates |           |        |       |         |       |         |         |  |  |
|-----------------------------------|-----------|--------|-------|---------|-------|---------|---------|--|--|
| Threshold Option                  | Threshold | Trim   | Mu    | Sigma   | EC50  | 95% LCL | 95% UCL |  |  |
| Control Threshold                 | 0.112     | 17.68% | 1.737 | 0.01265 | 54.61 | 51.52   | 57.88   |  |  |

| Fertilization | on Rate Summary |       | Calculated Variate(A/B) |      |      |         |         |        |         |     |     |
|---------------|-----------------|-------|-------------------------|------|------|---------|---------|--------|---------|-----|-----|
| C-µg/L        | Control Type    | Count | Mean                    | Min  | Max  | Std Err | Std Dev | CV%    | %Effect | Α   | В   |
| 0             | Lab Control     | 5     | 0.888                   | 0.83 | 0.93 | 0.02059 | 0.04604 | 5.19%  | 0.0%    | 444 | 500 |
| 10            |                 | 5     | 0.69                    | 0.58 | 0.79 | 0.03536 | 0.07906 | 11.46% | 22.3%   | 345 | 500 |
| 20            |                 | 5     | 0.772                   | 0.65 | 0.85 | 0.04224 | 0.09445 | 12.23% | 13.06%  | 386 | 500 |
| 40            |                 | 5     | 0.638                   | 0.52 | 0.75 | 0.05034 | 0.1126  | 17.64% | 28.15%  | 318 | 500 |
| 80            |                 | 5     | 0.25                    | 0.05 | 0.4  | 0.06921 | 0.1548  | 61.9%  | 71.85%  | 125 | 500 |
| 160           |                 | 5     | 0                       | 0    | 0    | 0       | 0       |        | 100.0%  | 0   | 500 |

| Graphics                                   |
|--------------------------------------------|
| 0.9                                        |
| 0.7 E E E E E E E E E E E E E E E E E E E  |
| 0.3                                        |
| 0.2                                        |
| 0,0 С-11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - |

Copper chloride

+3s Action Limit: 98.27

05 Oct-17 10:34 ( 1 of 1)

#### **Echinoid Sperm Cell Fertilization Test 15C**

Sigma:

15.98

CV:

31.80%

Nautilus Environmental (CA)

Test Type: Fertilization Organism: Strongylocentrotus purpuratus (Purpl Material:

Protocol: EPA/600/R-95/136 (1995) Endpoint: Fertilization Rate Source: Reference Toxicant-REF

#### **Echinoid Sperm Cell Fertilization Test 15C**



+2s Warning Limit:

82.29

| Quality Control Data |      |       |     |       |         |         |          |         |        |              |              |
|----------------------|------|-------|-----|-------|---------|---------|----------|---------|--------|--------------|--------------|
| Point                | Year | Month | Day | Time  | QC Data | Delta   | Sigma    | Warning | Action | Test ID      | Analysis ID  |
| 1                    | 2017 | Aug   | 21  | 14:46 | 69.95   | 19.62   | 1.228    |         |        | 08-4756-2919 | 20-2992-4955 |
| 2                    |      |       | 23  | 16:14 | 41.72   | -8.613  | -0.539   |         |        | 02-7595-3678 | 15-3490-2746 |
| 3                    |      |       | 24  | 16:11 | 67.1    | 16.77   | 1.05     |         |        | 04-7651-5518 | 20-0883-0005 |
| 4                    |      |       | 25  | 14:48 | 43.11   | -7.22   | -0.4518  |         |        | 06-8816-1100 | 09-0830-4014 |
| 5                    |      |       | 26  | 16:00 | 57.24   | 6.911   | 0.4325   |         |        | 10-2039-5656 | 15-8794-0305 |
| 6                    |      |       | 28  | 14:56 | 41.55   | -8.778  | -0.5493  |         |        | 08-1525-2751 | 10-7829-2432 |
| 7                    |      |       | 30  | 16:38 | 50.21   | -0.1181 | -0.00739 |         |        | 08-1199-3706 | 11-0543-3886 |
| 8                    |      | Sep   | 1   | 15:27 | 34.79   | -15.54  | -0.9722  |         |        | 13-1244-6646 | 21-1567-7550 |
| 9                    |      |       | 2   | 10:53 | 89.99   | 39.66   | 2.482    | (+)     |        | 16-4202-9692 | 18-8681-1855 |
| 10                   |      |       | 4   | 16:10 | 53.77   | 3.442   | 0.2154   |         |        | 12-2973-1405 | 10-6032-1229 |
| 11                   |      |       | 5   | 17:07 | 37.36   | -12.97  | -0.8117  |         |        | 13-1627-7974 | 14-5447-1160 |
| 12                   |      |       | 6   | 17:15 | 44.41   | -5.917  | -0.3703  |         |        | 05-5533-8557 | 16-8161-1582 |
| 13                   |      |       | 8   | 15:48 | 37.91   | -12.42  | -0.777   |         |        | 18-6871-7794 | 04-4479-5076 |
| 14                   |      |       | 10  | 14:25 | 40.4    | -9.928  | -0.6213  |         |        | 11-6871-9499 | 08-4248-1228 |
| 15                   |      |       | 12  | 15:51 | 81.07   | 30.74   | 1.924    |         |        | 20-0603-9450 | 06-1182-7961 |
| 16                   |      |       | 13  | 19:07 | 52.04   | 1.706   | 0.1068   |         |        | 01-4575-6189 | 02-4618-7964 |
| 17                   |      |       | 14  | 15:24 | 34.24   | -16.09  | -1.007   |         |        | 11-2846-3680 | 13-8128-7168 |
| 18                   |      |       | 16  | 17:08 | 56.97   | 6.64    | 0.4155   |         |        | 08-9569-1329 | 19-6375-1112 |
| 19                   |      |       | 18  | 15:28 | 39.21   | -11.12  | -0.6961  |         |        | 19-2924-5672 | 02-0031-2532 |
| 20                   |      |       | 20  | 16:15 | 33.62   | -16.71  | -1.045   |         |        | 00-4454-0074 | 17-7214-1415 |
| 21                   |      |       | 22  | 14:50 | 54.61   | 4.279   | 0.2677   |         |        | 20-3341-5102 | 16-2759-7635 |

21 Sep-17 18:06 (p 1 of 1) 20-3341-5102/170922sprt

Test Code:

Nautilus Environmental (CA)

**Echinoid Sperm Cell Fertilization Test 15C** 

22 Sep-17 22 Sep-17

Start Date:

End Date:

Species: Strongylocentrotus purpuratus

**Protocol:** EPA/600/R-95/136 (1995)

170922sprt

Sample Code: Sample Source: Reference Toxicant Sample Station: Copper Chloride

| mple Date | e: 22 S | Sep-17 | 7   | Materia   | I: Copper chl                         | oride     | Sample Station: Copper Chloride |
|-----------|---------|--------|-----|-----------|---------------------------------------|-----------|---------------------------------|
| C-µg/L    | Code    | Rep    | Pos | # Counted | # Fertilized                          |           | Notes                           |
| 122       |         |        | 1   | 100       | 65                                    | J 9128/17 |                                 |
|           |         |        | 2   |           | 93                                    |           |                                 |
|           |         |        | 3   |           | 65<br>93<br>83                        |           |                                 |
|           |         |        | 4   |           | 58                                    |           |                                 |
|           |         |        | 5   |           | 58<br>72<br>85                        |           |                                 |
|           |         |        | 6   |           | 85                                    |           |                                 |
|           |         |        | 7   |           | 69<br>75                              |           |                                 |
|           | 1       |        | 8   |           | 75                                    |           |                                 |
|           |         |        | 9   |           | Ď                                     |           |                                 |
|           |         |        | 10  |           | Ö                                     |           | `                               |
|           |         |        | 11  |           | 84                                    |           |                                 |
|           |         |        | 12  |           | 0                                     |           |                                 |
|           |         |        | 13  |           | 7Ĭ                                    |           |                                 |
|           |         |        | 14  |           | 79                                    |           |                                 |
|           |         |        | 15  |           |                                       |           |                                 |
|           |         |        | 16  |           | 40<br>33                              |           |                                 |
|           |         |        | 17  |           | 35                                    |           |                                 |
|           |         |        | 18  |           | 64                                    |           |                                 |
|           |         |        | 19  |           | 5                                     |           |                                 |
|           |         |        | 20  |           | 85                                    |           |                                 |
|           | -       |        | 21  |           | 52                                    |           |                                 |
|           |         |        | 22  |           | 15                                    |           |                                 |
|           |         |        | 23  |           | 35<br>64<br>5<br>85<br>52<br>65<br>83 |           |                                 |
|           |         |        | 24  |           | 0                                     |           |                                 |
|           | +-      |        | 25  |           | 90                                    |           |                                 |
|           |         |        | 26  |           | 90<br>75                              |           |                                 |
|           | +       |        | 27  |           | 53                                    |           | •                               |
|           |         | _      | 28  |           | 12                                    |           |                                 |
|           |         |        | 29  |           | Ö                                     |           |                                 |
|           | -       |        | 30  |           | 93                                    |           |                                 |

Analyst: 4 QA: 429 08 17

21 Sep-17 18:06 (p 1 of 1) 20-3341-5102/170922sprt

Test Code:

Nautilus Environmental (CA)

Start Date:22 Sep-17Species:SEnd Date:22 Sep-17Protocol:ESample Date:22 Sep-17Material:0

Species: Strongylocentrotus purpuratus
Protocol: EPA/600/R-95/136 (1995)
Material: Copper chloride

Sample Code: 170922sprt
Sample Source: Reference Toxicant
Sample Station: Copper Chloride

| C-µg/L | Code | Rep | Pos | # Counted    | # Fertilized | Notes       |
|--------|------|-----|-----|--------------|--------------|-------------|
| 0      | LC   | 1   | 30  | loo          | 91           | PM 9/22/17  |
| 0      | LC   | 2   | 23  |              |              | 77 (100) (1 |
| 0      | LC   | 3   | 20  |              |              |             |
| 0      | LC   | 4   | 25  |              |              |             |
| 0      | LC   | 5   | 2   |              |              |             |
| 10     |      | 1   | 13  | 100          | 83           | DM 9/22/17  |
| 10     |      | 2   | 22  |              |              |             |
| 10     |      | 3   | 5   |              |              |             |
| 10     |      | 4   | 4   |              |              |             |
| 10     |      | 5   | 14  |              |              |             |
| 20     |      | 1   | 6   | 100          | 71           | DM 9/22/17  |
| 20     |      | 2   | 11  |              | ,            |             |
| 20     |      | 3   | 1   |              |              |             |
| 20     |      | 4   | 7   |              |              |             |
| 20     |      | 5   | 3   |              |              |             |
| 40     |      | 1   | 8   | 100          | 72           | DM 9/22/17  |
| 40     |      | 2   | 21  |              |              | · ·         |
| 40     |      | 3   | 18  | 100          | 49           | (1 9/2 17   |
| 40     |      | 4   | 26  | 7            | , ,          |             |
| 40     |      | 5   | 27  |              |              |             |
| 80     |      | 1   | 19  | 100          | 12           | DM 9/22/17  |
| 80     |      | 2   | 28  |              |              |             |
| 80     |      | 3   | 15  | :            |              |             |
| 80     |      | 4   | 17  |              |              |             |
| 80     |      | 5   | 16  |              |              | _           |
| 160    |      | 1   | 29  | 100          | 0            | pm 9/22/17  |
| 160    |      | 2   | 24  | <del>-</del> |              |             |
| 160    |      | 3   | 10  |              |              |             |
| 160    |      | 4   | 12  |              |              |             |
| 160    |      | 5   | 9   |              |              |             |

QC:CG

Test Species: S. purpuratus Internal Client:

Sample ID: Start Date/Time: 9/22/2017 CuCl<sub>2</sub>

End Date/Time: 9/22/2017 170922sprt Test No:

Dilutions made by:

High conc. made (μg/L): 160 Vol. Cu stock added (mL): 7.8

500 Final Volume (mL):

Cu stock concentration (μg/L): 10,200

|                         | Initial Readings |               |                   |                     |  |  |  |  |  |  |
|-------------------------|------------------|---------------|-------------------|---------------------|--|--|--|--|--|--|
| Concentration<br>(μg/L) | DO<br>(mg/L)     | pH<br>(units) | Salinity<br>(ppt) | Temperature<br>(°C) |  |  |  |  |  |  |
| Lab Control             | 8.5              | 8.08          | 33.4              | 15.5                |  |  |  |  |  |  |
| 10                      | 8.5              | 8.09          | 33.4              | 15.2                |  |  |  |  |  |  |
| 20                      | 8.6              | 8.09          | 33.5              | 15.0                |  |  |  |  |  |  |
| 40                      | 8.5              | 8.09          | 33.5              | 15.2                |  |  |  |  |  |  |
| 80                      | 8.5              | 8.10          | 33.4              | 15.1                |  |  |  |  |  |  |
| 160                     | 8.6              | 8.12          | 333°              | 15.0                |  |  |  |  |  |  |
|                         |                  |               |                   |                     |  |  |  |  |  |  |
|                         |                  |               |                   |                     |  |  |  |  |  |  |

| Comments: | (R) | 04 | Org | 9 | 22 | 7 |
|-----------|-----|----|-----|---|----|---|
| Comments. |     |    |     |   |    |   |

QC Check:

Final Review: E4 10317

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

# Marine Chronic Bioassay

# **Echinoderm Sperm-Cell Fertilization Worksheet**

| marine ememe.    | 2,000,000        |                  |                         | -                             |                  |
|------------------|------------------|------------------|-------------------------|-------------------------------|------------------|
| Client:          | Internal         |                  |                         | Start Date/Time:              | 9/22/2017 / 1450 |
| Sample ID:       | CUCIZ            |                  |                         | End Date/Time:                | 9/22/2017 / 1530 |
| Test No.:        | 110922504        | 7                |                         | Species:                      | S. purpuratus    |
|                  |                  |                  |                         | Animal Source:                | Pt. Coma         |
| Tech initials:   | (6               |                  |                         | Date Collected:               | 9/5/17           |
| Injection Time:  | 1400             |                  |                         |                               | •                |
| Sperm Absorbance | at 400 nm: 6.920 | (target range of | 0.8 - 1.0 for density o | f 4x10 <sup>6</sup> sperm/ml) |                  |
|                  |                  | 000              | 111 00                  |                               |                  |

| Sperm Absorbance at 40 | 00 nm:0. 9     | (target range of 0.8 - 1.0 for density of 4x10 <sup>6</sup> sperm/ml)                                     |
|------------------------|----------------|-----------------------------------------------------------------------------------------------------------|
| Eggs Counted:          | 95             | Mean: $93.0 \times 50 = 4690$ eggs/ml                                                                     |
|                        | 92<br>99<br>88 | (target counts of 80 eggs per vertical pass on Sedgwick-Rafter slide for a final density of 4000 eggs/ml) |

| Initial density: | 4690 | eggs/ml | = <u>1.17</u> dilution factor | egg stock | 100 | ml |
|------------------|------|---------|-------------------------------|-----------|-----|----|
| Final density:   | 4000 | eggs/ml | - 1.0 part egg stock          | seawater  |     | ml |
| ,                |      |         | o.₩ parts seawater            |           |     |    |

Prepare the embryo stock according to the calculated dilution factor. For example, if the dilution factor is 2.25, use 100 ml of existing stock (1 part) and 125 ml of dilution water (1.25 parts).

|                                                    |                     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sperm                 | n:Egg Ratio        |                    |                      |                       |
|----------------------------------------------------|---------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------|--------------------|----------------------|-----------------------|
| Rangefinder Test:<br>ml Sperm Stock<br>ml Seawater | 2000:1<br>50<br>0.0 | 40<br>10 | 1200:1<br>30<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 800:1<br>20<br>30     | 400:1<br>10<br>40  | 200:1<br>5.0<br>45 | 100:1<br>2.5<br>47.5 | 50:1<br>1.25<br>48.75 |
|                                                    | Time                | Ra       | ngefinder Ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>tio</u> : <u>I</u> |                    | nfert.             |                      |                       |
| Sperm Added (100 µl):                              | 1418                |          | 30:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       | <u>63</u> <u>3</u> | <u>+ +</u>         |                      |                       |
| Eggs Added (0.5 ml):                               | 1432                |          | 100:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | 9192 9             | <u>, 8</u>         |                      |                       |
| Test Ended:                                        | 1442                |          | () 700 D 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u> </u>              | 98 1               | 2                  |                      |                       |
|                                                    |                     |          | Market Company of the |                       |                    | okings             |                      |                       |

NOTE: Choose a sperm-to-egg ratio that results in fertilization between 80 and 90 percent. If more than one concentration is within this range, choose the ratio closest to 90 percent unless professional judgment dictates consideration of other factors (e.g., organism health, stage of reproductive season, site conditions).

| <u>Definitive Test</u>                                       |                     | Sperm:Egg Ratio Us                           | sed: <u>100 7</u> |                      |
|--------------------------------------------------------------|---------------------|----------------------------------------------|-------------------|----------------------|
| Sperm Added (100 µl):<br>Eggs Added (0.5 ml):<br>Test Ended: | Time 1450 1510 1530 | QC1<br>QC2<br>Egg Control 1<br>Egg Control 2 | 95<br>0           | Unfert. 10 5 100 100 |

| Comments: | (a) CG (a) a prix |
|-----------|-------------------|
|           |                   |

Final Review: Ely 10/3/17 QC Check:

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

Appendix E

Qualifier Codes



#### **Glossary of Qualifier Codes:**

- Q1 Temperatures out of recommended range; corrective action taken and recorded in Test Temperature Correction Log
- Q2 Temperatures out of recommended range; no action taken, test terminated same day
- Q3 Sample aerated prior to initiation or renewal due to dissolved oxygen (D.O.) levels below 6.0 mg/L
- Q4 Test aerated; D.O. levels dropped below 4.0 mg/L
- Q5 Test initiated with aeration due to an anticipated drop in D.O.
- Q6 Airline obstructed or fell out of replicate and replaced; drop in D.O. occurred
- Q7 Salinity out of recommended range
- Q8 Spilled test chamber/ Unable to recover test organism(s)
- Q9 Inadequate sample volume remaining, 50% renewal performed
- Q10 Inadequate sample volume remaining, no renewal performed
- Q11 Sample out of holding time; refer to QA section of report
- Q12 Replicate(s) not initiated; excluded from data analysis
- Q13 Survival counts not recorded due to poor visibility or heavy debris
- Q14 D.O. percent saturation was checked and was ≤ 110%
- Q15 Did not meet minimum test acceptability criteria. Refer to QA section of report.
- Q16 Percent minimum significant difference (PMSD) was <u>below</u> the lower bound limit for acceptability. This indicates that statistics may be over-sensitive in detecting a difference from the control due to low variability in the data set.
- Q17 Percent minimum significant difference (PMSD) was <u>above</u> the upper bound limit for acceptability. This indicates that statistics may be under-sensitive in detecting a difference from the control due to high variability in the data set.
- Q18 Incorrect Entry
- Q19 Illegible Entry
- Q20 Miscalculation
- Q21 Other (provide reason in comments section)
- Q22 Greater than 10% mortality observed upon receipt and/or in holding prior to test initiation.
   Organisms acclimated to test conditions at Nautilus and ultimately deemed fit to use for testing.
- Q23 Test or ganisms r eceived at a <u>temperature</u> greater than 3°C ou tside the r ecommended t est temperature range. However, due to age-specific protocol requirements and/or sample holding time constraints, the organisms were used to initiate tests upon the day of arrival. O rganisms were acclimated to the appropriate test conditions upon receipt and prior to test initiation.
- Q24 Test organisms received at <u>salinity</u> greater than 3 ppt outside of the recommended test salinity range. H owever, due t o age -specific pr otocol r equirements and/ or s ample ho lding t ime constraints, the organisms were used to initiate tests upon the day of arrival. Organisms were acclimated to the appropriate test conditions upon receipt and prior to test initiation.

Updated: 6/30/15