

Chronic Toxicity Test Results for the Carlsbad Desalination Plant

❖ Sample ID: M-001 (Daily) Sample Collection Date: September 15, 2017

Prepared for: IDE AMERICAS, Inc.

4590 Carlsbad Boulevard Carlsbad, CA 92008

Prepared by: Nautilus Environmental

Submitted: October 2, 2017

Data Quality Assurance:

- Nautilus Environmental is accredited in accordance with NELAP by the State of Oregon Environmental Laboratory Accreditation Program (Certificate No. 4053). It is also certified by the State of California Department of Health Services Environmental Laboratory Accreditation Program (Certificate No. 1802) and the State of Washington Department of Ecology (Lab ID C552).
- All data have been reviewed and verified.
- All test results have met minimum test acceptability criteria under their respective EPA protocols, unless otherwise noted in this report.
- o All test results have met internal Quality Assurance Program requirements.

California 4340 Vandever Avenue San Diego, California 92120

858.587.7333 fax: 858.587.3961 Results verified by: ______ adrienne Cibor

EXECUTIVE SUMMARY

CHRONIC TOXICITY TESTING CARLSBAD DESALINATION PLANT — SEPTEMBER 2017 ORDER NO. R9-2006-0065; NPDES NO. CA0109223

Sampling Date: September 15, 2017

<u>Test Date:</u> September 16, 2017

Sample ID: M-001 (off-spec period)

Effluent Limitation: 16.5 TU_c

Results Summary:

	Effluent Tes	st Results	Effluent Limitation
Bioassay Type:	NOEC	TUc	Met? (Yes/No)
Urchin Fertilization	6.06	16.5	Yes

Test ID: 1709-S153

Client: IDE Americas, Inc. Sample ID: M-001 Sample Date: September 15, 2017

INTRODUCTION

A discharge sample was collected in September 2017 for the Poseidon Resources (Channelside) LLC, Carlsbad Desalination Project (CDP) permit for daily chronic toxicity monitoring purposes. The discharge sample was collected from the CDP M-001 discharge monitoring point during a period of off-spec plant operation. Chronic toxicity testing for the effluent sample was conducted during this time according to the permit that was adopted in 2006 (Order No. R9-2006-0065). Bioassay testing was conducted at the Nautilus Environmental (Nautilus) laboratory in San Diego, California on September 16, 2017 using the purple urchin (*Strongylocentrotus purpuratus*) chronic fertilization test.

MATERIALS AND METHODS

Sample collection and delivery were performed by IDE Americas, Inc. (IDE) personnel. Following arrival at Nautilus, an aliquot of the water sample was poured off and the following water quality parameters were measured: pH, dissolved oxygen (DO), temperature, salinity, alkalinity, and total chlorine. The sample was stored at 4° C in the dark until used for testing. A summary of the sample collection and receipt information is provided in Table 1, and water quality parameters measured upon receipt at Nautilus are presented in Table 2. Testing was conducted in accordance with the protocols described in USEPA 1995, and the methods are summarized in Table 3.

Table 1. Sample Information

Client/Project:	IDE Americas, Inc./Carlsbad Desalination Plant					
Sample ID:	M-001 (off-spec period)					
Monitoring Period:	September 2017					
Sample Material:	Facility Effluent					
Sampling Method:	24hr Composite					
Sample Collection Date, Time:	9/15/17, 08:00					
Sample Receipt Date, Time:	9/16/17, 14:48					

Table 2. Water Quality Measurements for the M-001 Sample upon Receipt

Sample Collection	рН	DO	Temp	Salinity	Alkalinity	Total Chlorine
Date		(mg/L)	(°C)	(ppt)	(mg/L as CaCO₃)	(mg/L)
9/15/17	7.87	10.6	4.0	35.0	141	<0.02

TOXICITY SUMMARY REPORT

Client: IDE Americas, Inc. Test ID: 1709-S153 Sample ID: M-001

Sample Date: September 15, 2017

Table 3. Echinoderm Fertilization Chronic Bioassay Specifications

Test Date, Times: 9/16/17, 17:08 through 17:48

Test Organism: Strongylocentrotus purpuratus (purple sea urchin)

Test Organism Source: Field-collected off Point Loma in San Diego, CA

Lab Control/Dilution Water: Natural seawater (source: Scripps Institution of Oceanography inlet,

34±2 parts per thousand (ppt); 20-µm filtered

Test Concentrations: 2.5, 5.0, 6.06, 10, and 15 percent M-001 sample; lab control

Number of Replicates, Organisms

per Replicate:

5 replicates, 2000 eggs per replicate. Sperm to egg ratio determined

before each test with a preliminary rangefinding test.

Test Chamber Type, Volume per

Replicate:

Glass scintillation vial containing 10 mL of test solution

Protocol Used: EPA/600/R-95/136, 1995 West Coast Marine Chronic

Test Type: Fertilization; 20-min sperm exposure to effluent followed by a 20-

min fertilization period

Mean fertilization ≥70% in the control, and percent minimum Acceptability Criteria:

significant difference (PMSD) value <25.

Copper chloride Reference Toxicant Testing:

Statistical Analysis Software: CETIS™, version 1.8.7.20

Statistical analyses were conducted using EPA flowchart specifications as outlined in the test guidance manual (USEPA 1995). Organism performance in the sample dilution series was compared to that observed in the laboratory control exposure. Results were used to calculate the No Observed Effect Concentration (NOEC) and chronic toxic unit (TUc) values.

Results were also analyzed using the USEPA's Test of Significant Toxicity (TST) approach specified in National Pollutant Discharge Elimination System Test of Significant Toxicity Implementation Document (USEPA 2010). Notably, the California State Water Resources Control Board (SWRCB) published a Draft Policy for Toxicity Assessment and Control (SWRCB 2012), which includes the TST as an alternative method to evaluate toxicity data. This approach applies a modified t-test that takes into account both the statistical power of the test and the magnitude of biological effects in determining the presence of a response. For this sample, the in-stream waste concentration (IWC) is 6.06 percent unadjusted effluent; results are reported as "Pass" if a sample is considered non-toxic at the IWC according to the TST calculation, or "Fail" if considered toxic at the IWC according to the TST. As the TST is not included in the CDP permit at this time, the TST analysis was performed for comparison purposes only.

Test ID: 1709-S153

Client: IDE Americas, Inc. Sample ID: M-001

Sample Date: September 15, 2017

RESULTS

A statistically significant decrease in the fertilization rate was observed in the 10 and 15 percent effluent concentrations compared to the lab control. The NOEC is reported as 6.06 and the TUc is equal to 16.5, which meets the maximum effluent limitation of 16.5 for this permit. According to the TST analysis no significant difference was observed at any test concentrations when compared to lab control. Statistical results are summarized in Table 4, and detailed test results are summarized in Table 5. Raw test data and full statistical analyses can be found in Appendix A. Sample receipt information and copies of the chain-of-custody form are in Appendices B and C, respectively.

Table 4. Statistical Results for Purple Urchin Fertilization Testing

Sample I D	NOEC (% sample)	LOEC (% sample)	EC ₅₀ (% sample)		TST Result (Pass/Fail)	Percent Effect at IWC
M-001	6.06	10	>15	16.5	Pass	0.86

NOEC = No Observed Effect Concentration

LOEC = Lowest Observed Effect Concentration

 EC_{50} = Concentration expected to cause an adverse effect to 50 percent of the test organisms

 $TU_c = Chronic Toxic Unit: 100 \div NOEC$

TST: Pass = sample is non-toxic at the IWC according to the TST calculation; Fail = sample is toxic at the IWC according to the TST calculation. The TST analysis is not in the existing CDP permit; TST analysis is included here for comparison purposes only. Percent effect (PE) from control is calculated as: PE= ((mean response in control-mean response in the IWC)/mean response in control) *100. A negative PE results when organism performance in the sample is greater than that in the control.

Table 5. Detailed Results of Purple Urchin Fertilization Testing for the M-001 Sample

Test Concentration (% Sample)	Mean Percent Fertilization
Lab Control	92.8
2.5	94.8
5.0	93.6
6.06	92.0
10	85.8*
15	83.2*

^{*}An asterisk indicates a statistically significant decrease compared to the lab control

Client: IDE Americas, Inc. Test ID: 1709-S153 Sample ID: M-001

Sample Date: September 15, 2017

QUALITY ASSURANCE

The sample was received on the day after collection and was within the appropriate temperature range. The test was initiated within the 36-hour holding time. The lab control met all test acceptability criteria, and the PMSD value, which is a measure of test variability, was within the acceptable limits. Statistical analyses followed USEPA flowchart selections and dose-response relationships were reviewed to ensure the reliability of the data. Based on the dose responses observed during testing, the calculated effect concentrations reported are deemed reliable. Additionally, appropriate alpha levels were used for statistical analyses according to the TST Implementation Document guidelines (USEPA 2010).

Results for the concurrent reference toxicant test used to monitor laboratory performance and test organism sensitivity met all test acceptability criteria. The median effect (EC50) value calculated for this test was within two standard deviations (2SD) of the historical mean for our laboratory, indicating organisms were of typical sensitivity to copper. Results for the reference toxicant test are summarized in Table 6 and presented in full in Appendix D. A list of qualifier codes can be found in Appendix E.

Table 6. Urchin Fertilization Reference Toxicant Test Results

Test Date	EC ₅₀ (µg/L Copper)	Historical Mean EC ₅₀ ±2 SD (μg/L Copper)	CV (%)
9/16/17	57.0	49.7 ± 32.9	33.1

 EC_{50} = Concentration expected to cause an adverse effect to 50 percent of the test organisms Historical Mean EC₅₀ ± 2 SD = Mean of historical test results plus or minus two standard deviations CV = Coefficient of Variation

TOXICITY SUMMARY REPORT

Client: IDE Americas, Inc. Test ID: 1709-S153 Sample ID: M-001

Sample Date: September 15, 2017

REFERENCES

California Regional Water Quality Control Board Region 9, San Diego (RWQCB) 2006. Waste Discharge Requirements for the Poseidon Resources (Channelside) LLC, Carlsbad Desalination Project, Discharge to the Pacific Ocean via the Encina Power Station Discharge Channel. Order No. R9-2006-0065, NPDES No. CA109223. June 2006.

- California State Water Resources Control Board (SWRCB) 2012. Draft Policy for Toxicity Assessment and Control. June 2012. Sacramento, CA.
- Tidepool Scientific Software. 2000-2013. CETIS™ Comprehensive Environmental Toxicity Information System Software, Version 1.8.7.20
- USEPA. 1995. Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms. EPA/600/R-95/136.
- USEPA. 2010. National Pollutant Discharge Elimination System Test of Significant Toxicity Implementation Document. EPA/833/R-10/003. June 2010.

Appendix A

Test Data and Statistical Analyses

CETIS Summary Report

Report Date:

20 Sep-17 13:39 (p 1 of 1)

Test Code:

1709-S153 | 13-5595-4448

Echinoid Sperm Cell Fertilization Test 15C	Nautilus	Environr	nental (CA)		
	oratory Seav Applicable	vater			
Sample ID: 10-1244-0834 Code: 17-1032 Client: IDE Sample Date: 15 Sep-17 08:00 Material: Facility Effluent Project: Carls Receive Date: 16 Sep-17 14:48 Source: IDE Americas, Inc. Sample Age: 33h (4 °C) Station: M-001 (Daily)	Facility Effluent Project: Carlsbad Desal I IDE Americas, Inc.				
Comparison Summary					
Analysis ID Endpoint NOEL LOEL TOEL PMSD TU Method 14-3427-0519 Fertilization Rate 6.06 10 7.785 4.47% 16.5 Dunnett Mu	ultiple Comp	parison Te	st		
Point Estimate Summary					
Analysis ID Endpoint Level % 95% LCL 95% UCL TU Method					
	Linear Interpolation (ICPIN)				
Test Acceptability		275 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			
Analysis ID Endpoint Attribute Test Stat TAC Limits Overlap	Decision				
14-3427-0519 Fertilization Rate Control Resp 0.928 0.7 - NL Yes	Passes Ac	ceptability	Criteria		
19-4024-4669 Fertilization Rate Control Resp 0.928 0.7 - NL Yes	Passes Ac	ceptability	Criteria		
14-3427-0519 Fertilization Rate PMSD 0.04466 NL - 0.25 No	Passes Ac	ceptability	Criteria		
Fertilization Rate Summary		die his his tribuie de action en accordant e			
C-% Control Type Count Mean 95% LCL 95% UCL Min Max Std Err	Std Dev	CV%	%Effect		
0 Lab Control 5 0.928 0.9076 0.9484 0.9 0.94 0.007348	0.01643	1.77%	0.0%		
2.5 5 0.948 0.9318 0.9642 0.93 0.96 0.005831	0.01304	1.38%	-2.16%		
5 0.936 0.9193 0.9527 0.92 0.95 0.006	0.01342	1.43%	-0.86%		
6.06 5 0.92 0.8968 0.9432 0.9 0.95 0.008366	0.01871	2.03%	0.86%		
10 5 0.858 0.8214 0.8946 0.83 0.9 0.01319	0.0295	3.44%	7.54%		
15 5 0.832 0.7518 0.9122 0.75 0.93 0.02888	0.06458	7.76%	10.34%		
Fertilization Rate Detail					
C-% Control Type Rep 1 Rep 2 Rep 3 Rep 4 Rep 5					
0 Lab Control 0.93 0.9 0.93 0.94 0.94					
2.5 0.93 0.94 0.95 0.96 0.96					
5 0.93 0.95 0.95 0.93 0.92					
6.06 0.92 0.91 0.92 0.95 0.9					
10 0.87 0.83 0.83 0.86 0.9					
5.U UU.U CO.O (O.O)					

Analyst: QA.4C913811

Report Date:

20 Sep-17 13:39 (p 1 of 2)

Test Code:

1709-S153 | 13-5595-4448

								5040.	.,,		
Echinoid Sp	erm Cell Fertiliza	ation Test	15C						Nautilus	Environr	mental (CA
Analysis ID:	14-3427-0519	En	dpoint: Fer	tilization Rat	e		CET	S Version:	CETISv1.	8.7	
Analyzed:	20 Sep-17 13:	37 An	alysis: Par	ametric-Con	trol vs Trea	tments	Offic	ial Results	: Yes		
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU
Angular (Corrected) NA			C > T	NA	NA		4.47%	6.06	10	7.785	16.5
Dunnett Mul	tiple Compariso	n Test									
Control	vs C-%		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision	(a:5%)		
Lab Control	2.5		-1,349	2,362	0.073 8	0.9940	CDF	Non-Sign	ificant Effect	***************************************	
	5		-0.5099	2.362	0.073 8	0.9415	CDF	Non-Sign	ificant Effect		
	6.06		0.4735	2.362	0.073 8	0.6584	CDF	Ū	ificant Effect		
	10*		3.696	2.362	0.073 8	0.0025	CDF	Significar			
	15*		4.698	2.362	0.073 8	0.0002	CDF	Significar			
ANOVA Tabl	le										
Source	Sum Squ	ares	Mean Squ	ıare	DF	F Stat	P-Value	Decision	(α:5%)		
Between	0.1429374		0.0285874	18	5	11.94	<0.0001	Significar	nt Effect		OX-00-000000000000000000000000000000000
Error	0.057455	83	0.0023939	993	24			•			
Total	0.200393	2		***************************************	29	_					
Distribution	al Tests									en de para de manuel en acuada de maio de para	
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances	Bartlett E	quality of \	/ariance	9.801	15.09	0.0811	Equal Var	iances			
Distribution	Shapiro-	Wilk W Nor	mality	0.9163	0.9031	0.0216	Normal Distribution				
Fertilization	Rate Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	0.928	0.9076	0.9484	0.93	0.9	0.94	0.007348	1.77%	0.0%
2.5		5	0.948	0.9318	0.9642	0.95	0.93	0.96	0.005831	1.38%	-2.16%
5		5	0.936	0.9193	0.9527	0.93	0.92	0.95	0.006	1.43%	-0.86%
6.06		5	0.92	0.8968	0.9432	0.92	0.9	0.95	0.008366	2.03%	0.86%
10		5	0.858	0.8214	0.8946	0.86	0.83	0.9	0.01319	3.44%	7.54%
		5	0.832	0.7518	0.9122	0.82	0.75	0.93	0.02888	7.76%	10.34%
15		J	0.002								
	rrected) Transfor										
Angular (Co	rrected) Transfor			95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
Angular (Co	•	med Sumr	mary	95% LCL 1.263	95% UCL 1.338	Median	Min 1.249	Max 1.323	Std Err 0.01361	CV% 2.34%	%Effect
Angular (Co C-% 0	Control Type	med Sumr Count	mary Mean								
Angular (Co	Control Type	med Sumr Count 5	mary Mean 1.3	1.263	1.338	1.303	1.249	1.323	0.01361	2.34%	0.0%
Angular (Co C-% 0 2.5	Control Type	med Sumr Count 5	Mean 1.3 1.342	1.263 1.306	1.338 1.378	1.303 1.345	1.249 1.303	1.323 1.369	0.01361 0.01301	2.34% 2.17%	0.0% -3.21%
Angular (Co C-% 0 2.5 5	Control Type	rmed Sumr Count 5 5 5	Mean 1.3 1.342 1.316	1.263 1.306 1.282	1.338 1.378 1.351	1.303 1.345 1.303	1.249 1.303 1.284	1.323 1.369 1.345	0.01361 0.01301 0.01239	2.34% 2.17% 2.11%	0.0% -3.21% -1.21%

CETIS Analytical Report

Report Date: Test Code: 20 Sep-17 13:39 (p 2 of 2) 1709-S153 | 13-5595-4448

Echinoid Sperm Cell Fertilization Test 15C Nautilus Environmental (CA) 14-3427-0519 Analysis ID: Endpoint: Fertilization Rate **CETIS Version:** CETISv1.8.7 Analyzed: 20 Sep-17 13:37 Analysis: Parametric-Control vs Treatments Official Results: Yes Graphics 0.16 0.14 0.9 0.12 0.8 0.10 Fertilization Rate 0.08 0.7 0.06 0.6 0.04 0.5 0.02 0.00 0.4 -0.02 0.3 -0.04 -0.06 0.2 -0.08 0.1 -0.10 -0.12 6.06 0 LC 2.5 10 15 -2.5 -2.0 -1.5 -0.5 C-% Rankits

CETIS Analytical Report

EC50

>15

N/A

N/A

<6.667

Report Date:

20 Sep-17 13:39 (p 1 of 1)

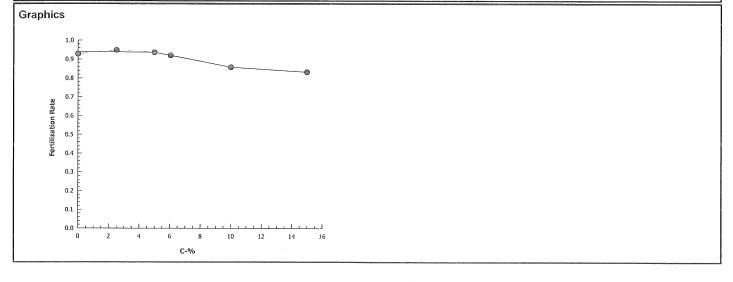
Test Code:

1709-S153 | 13-5595-4448

Echinoid Sperm Cell Fertilization Test 15C

Nautilus Environmental (CA)

Analysis ID: 19-4024-4669 Endpoint: Fertilization Rate CETIS Version: CETISv1.8.7


Analyzed: 20 Sep-17 13:37 Analysis: Linear Interpolation (ICPIN) Official Results: Yes

NA

Linear	Interpolat	tion Options						
X Trans	sform	Y Transform	Seed	l F	Resamples	Exp 95% CL	Method	
Linear		Linear	7554	55 1	000	Yes	Two-Point Interpolation	
Point E	stimates							
Point E	stimates		95% UCL	TU	95% LCL	95% UCL		

NA

Fertilizat	tion Rate Summary	Calculated Variate(A/B)									
C-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Lab Control	5	0.928	0.9	0.94	0.007348	0.01643	1.77%	0.0%	464	500
2.5		5	0.948	0.93	0.96	0.005831	0.01304	1.38%	-2.16%	474	500
5		5	0.936	0.92	0.95	0.006	0.01342	1.43%	-0.86%	468	500
6.06		5	0.92	0.9	0.95	0.008366	0.01871	2.03%	0.86%	460	500
10		5	0.858	0.83	0.9	0.01319	0.0295	3.44%	7.54%	429	500
15		5	0.832	0.75	0.93	0.02888	0.06458	7.76%	10.34%	416	500

Report Date: Test Code: 20 Sep-17 13:39 (p 1 of 1) 1709-S153 | 13-5595-4448

							lest	Code:	170	9-0103 1	3-5595-444
Echinoid Sp	erm Cell Fertiliza	ation Te	est 15C						Nautilus	Environ	mental (CA
Analysis ID:	08-9493-1760	00	•	Fertilization Ra					CETISv1	.8.7	
Analyzed:	20 Sep-17 13:	38	Analysis:	Parametric Bio	equivalence	-Two Samp	le Offic	cial Results:	Yes		
Data Transfo	orm	Zeta	Alt Hy	p Trials	Seed	TST b	PMSD	NOEL	LOEL	TOEL	TU
Angular (Corrected) NA		NA	C*b < -	T NA	NA	0.75	5.73%	15	>15	NA	6.667
TST-Welch's	t Test										
Control	vs C-%		Test S	tat Critical	MSD DF	P-Value	P-Type	Decision(a:5%)		
Lab Control	2.5*		22.19	1.895	0.031 7	<0.0001	CDF	Non-Signif	ficant Effect		
	5*		21.23	1.895	0.030 7	< 0.0001	CDF	•	ficant Effect		
	6.06*		16.18	1.943	0.037 6	<0.0001	CDF	ū	ficant Effect		
	10*		9.646	1.943	0.042 6	< 0.0001	CDF	_	ficant Effect		
	15*		4.199	2.132	0.091 4	0.0069	CDF	_	ficant Effect		
ANOVA Tabl	е										
Source	Sum Squ	ares	Mean S	Square	DF	F Stat	P-Value	Decision(α:5%)		
Between	0.142937	4	0.0285	8748	5	11.94	<0.0001	Significant	Effect		
Error	0.057455	0.05745583 0.00239399		93993	24						
Total	0.200393				29	_					
Distributiona	al Tests						7.10.000				
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances	Bartlett E	quality	of Variance	9.801	01 15.09 0.0811		Equal Var	iances			(
Distribution	Shapiro-\	Wilk W I	Normality	0.9163	0.9031	0.0216	Normal Distribution				
Fertilization	Rate Summary										
C-%	Control Type	Coun	t Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	0.928	0.9076	0.9484	0.93	0.9	0.94	0.007348	1.77%	0.0%
2.5		5	0.948	0.9318	0.9642	0.95	0.93	0.96	0.005831	1.38%	-2.16%
5		5	0.936	0.9193	0.9527	0.93	0.92	0.95	0.006	1.43%	-0.86%
6.06		5	0.92	0.8968	0.9432	0.92	0.9	0.95	0.008366	2.03%	0.86%
10		5	0.858	0.8214	0.8946	0.86	0.83	0.9	0.01319	3.44%	7.54%
15		5	0.832	0.7518	0.9122	0.82	0.75	0.93	0.02888	7.76%	10.34%
Angular (Cor	rected) Transfor	med Su	ımmary								
C-%	Control Type	Coun	t Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	1.3	1.263	1.338	1.303	1.249	1.323	0.01361	2.34%	0.0%
2.5		5	1.342	1.306	1.378	1.345	1.303	1.369	0.01301	2.17%	-3.21%
5		5	1.316	1.282	1.351	1.303	1.284	1.345	0.01239	2.11%	-1.21%
6.06		5	1.286	1.241	1.331	1.284	1.249	1.345	0.01625	2.83%	1.13%
10		5	1.186	1.132	1.24	1.187	1.146	1.249	0.01931	3.64%	8.8%

Analyst: QA: K 9/28/17

CETIS Test Data Worksheet

Report Date:

15 Sep-17 16:39 (p 1 of 1)

Test Code: 1709-S15313-5595-4448/50D23910

Echinoid Sperm Cell Fertilization Test 15C

Nautilus Environmental (CA)

Start Date: End Date:

16 Sep-17 16 Sep-17

Species: Strongylocentrotus purpuratus

Protocol: EPA/600/R-95/136 (1995)

Sample Code: 17-1032
Sample Source: IDE Americas, Inc.
Sample Station: M-001 (Daily) (9/15 Sample V)

C-%	Code	Rep	Pos	# Counted	# Fertilized	Sample Station: M-001 (Daily) (9/15 Sam
- 70	Joue	ЛСР	31			
				100	96	9/20/17
			32	100	95	
			33	/60	93	
			34	100	23	
			35	/00	A 70 82	
			36	160	93	
			37	/60	91	
			38	100	92	
			39	700	93	
			40	760	94	
			41	/00	95	
			42	100	96	
			43	100	90	
			44	/GO	93	
			45	1,00	87 83	
			46	100	83	
			47	100	94	
-			48	/00	92	
			49	/00	92 82 95	
			50	100	95	
			51	100	95	
			52	100	93	
			53	/00	92 94	
			54	160	94	
			55	100	90	
			56	100	83	
			57	lon	\$/1	
			58	100	84 90	
			59	100	75	
			60	100	75 86	

) Q18 AC 0180 SG 9/20/17

CETIS Test Data Worksheet

Report Date:

15 Sep-17 16:39 (p 1 of 1)

Test Code: 1709-5/53 13-5595-4448/50D23910

Echinoid Sperm Cell Fertilization Test 15C

Nautilus Environmental (CA)

Start Date: 16 Sep-17 16 Sep-17 End Date:

Species: Strongylocentrotus purpuratus Protocol: EPA/600/R-95/136 (1995)

Sample Code: 17- 1032 Sample Source: IDE Americas, Inc.

Sample Date: 15 Sep-17

Material: Facility Effluent

Sample Station: M-001 (Daily) (9/15 Sample)

C-%	Code	Rep	Pos	# Counted	# Fertilized	Notes
0	LC	1	44			
0	LC	2	43			
0	LC	3	52			
0	LC	4	54			,
0	LC	5	47	100	97	Pro 9/16/17
2.5		1	39		- ,	
2.5		2	40			
2.5		3	32			
2.5		4	42			
2.5		5	31	100	95	
5		1	36			
5		2	50			
5		3	51			
5		4	34			
5		5	38			
6.06		1	53	100	550	
6.06		2	37			
6.06		3	48			
6.06		4	41			7
6.06		5	58			
10		1	45			
10		2	56			
10		3	46			
10		4	60			
10		5	55			
15		1	35			
15		2	57			
15		3	59			
15		4	49			
15		5	33			

OC:AD

BAD 9/16/17

Marine Chronic Bioassay

Water Quality Measurements

01		- 4	
1 -1	ıe.	nr	•
\sim	15		

IDE

Test Species: S. purpuratus

Sample ID:

M-001 Daily 9/15 sample

Start Date/Time: 9/16/2017

Sample Log No.: 17- 1032

End Date/Time: 9/16/2017

Dilutions made by:

Test No: 1709-S153

			Analyst:	RT		
2017/00/21/2004			teadings			
Concentration %	DO (mar/l)	pH (verify)	Salinity	Temperature		
/0	(mg/L)	(units)	(ppt)	(,C)		
Lab Control	8.5	8.13	33,5	15.8		
2.5	8.4	8.12	33,7	16.0		
5.0	8.4	8, 11	33.8	15.8		
6.06	8,4	8.11	33.9	15,8		
10	8,5	8.10	34.0	15.5		
15	8.6	8.09	34.1	(5.2		

Comments:		
		`
QC Check:	AC 9/20/17	Final Review: 5/01/17

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

Marine Chronic Bioassay

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

Echinoderm Sperm-Cell Fertilization Worksheet

Client: Sample ID: Test No.:	1DZ Dády M-001 (9 1709-S153	(15 sample)	 	End Date/Ti	me: 9/16/2017 / 1708 me: 9/16/2017 / 1748 iess. Dannard
Tech initials:	AD			Animal Sou	rce: Pt 10Ma
Injection Time:	1625			Date Collect	leu. <u>8120[[]</u>
Sperm Absorbance at 4	400 nm: <u>0,951</u>	(target range of (0.8 - 1.0 for densi	ty of 4x10 ⁶ sperm/	ml)
Eggs Counted:	Mea Mea	n: <u>96 </u>	0 = 4800	eggs/ml	
		et counts of 80 eggs p r slide for a final dens			
Initial density:	Ц800 _{eggs/ml}	= 1.2 dilut	ion factor	egg stock	OO ml
Final density:	4000 eggs/ml	- <u>1.0</u> part	egg stock s seawater	seawater	20 ml
Prepare the embryo sto existing stock (1 part) a	ck according to the calcul nd 125 ml of dilution wate	ated dilution factor.	For example, if t		s 2.25, use 100 ml of
Rangefinder Test:	2000:1 1600:	1 1200:1	<u>Sperm:Egg Rat</u> 800:1 400		100-4 50-4
ml Sperm Stock	50 40	30	20 10	5.0	100:1 50:1 2.5 1.25
ml Seawater	0.0 10	20	30 40) 45	47.5 48.75
Sperm Added (100 μl): Eggs Added (0.5 ml): Test Ended:	Time 1435 1450 1700	Rangefinder Ratio	Ert. 11 81,90 96	Unfert. 23 19110 4	
this range, choose the ra	n-to-egg ratio that results i atio closest to 90 percent of reproductive season, sit	unless professional	en 80 and 90 per judgment dictate	cent. If more than s consideration of	one concentration is within other factors (e.g.,
<u>Definitive Test</u>		Sperm:Egg Ratio	Used: <u> 50</u>	1	
Sperm Added (100 μl): Eggs Added (0.5 ml): Test Ended:	Time 1708 1728 1748	QC1 QC2 Egg Control 1 Egg Control 2	Fert.	Unfert. 12 10 100	ę
Comments:					
QC Check:	AC9/20/17			Final Revie	w: '> 10/1/7

Appendix B

Sample Receipt Information

Nautilus Environmental 4340 Vandever Avenue San Diego, CA 92120

Client:	105			
Sample ID:	Daily	M-001	19/15	Sample)
Test ID No(s).:	1700	7-5153)	V

Sample (A, B, C):	A			
Log-in No. (17-xxxx):	1032			
Sample Collection Date & Time:	9115/17 0800			
Sample Receipt Date & Time:	7116/17 1448			
Number of Containers & Container Type:	14Lcubi			
Approx. Total Volume Received (L):	NYL			
Check-in Temperature (°C)	4.0			
Temperature OK? ¹	(Y) N	Y N	ΥN	YN
DO (mg/L)	10.6			
pH (units)	7.67			
Conductivity (µS/cm)				
Salinity (ppt)	35.0			
Alkalinity (mg/L) 2	14\			
Hardness (mg/l.) ^{2, 3}	- منتسونسی ریسمسی			
Total Chlorine (mg/L)	20,02			
Technician Initials	RT	24		

	Additional Control? Y (N	Alkalinity: 97 Hardn	Lab SW / Lab ART Other: ness of Salinity: Hardness or Salinity:	
Test Performed:		Control/Dilution Water: 8:2 Alkalinity: Hardn	/ Lab SW / Lab ART Other:	
	Additional Control? Y N	= Alkalinity:	Hardness or Salinity:	
Test Performed:		Control/Dilution Water: 8:2 Alkalinity: Hardn	/ Lab SW / Lab ART Other:	
	Additional Control? Y N	= Alkalinity:	Hardness or Salinity:	_
Notes:		uld be 0-6°C, if received more than 2		
	² mg/L as CaCO3, ³ Measure	d for freshwater samples only, NA =	Not Applicable	
ional Comments:				

Sample Check-In Information

Sample Description:	. ا م د ا		dein 15
A! no color, (- Lew no	odes, no	<i>2</i> 4915

COC Complete (Y/N)	?		
AY B C			
- 14.44. 0 V (3)		
Filtration? Y (N)		
Pore Size:		– Debris	
Organisms	or	Debris	
Salinity Adjustment?	Y (N)		
Test:	Source:	Targe	et ppt:
Test:	Source:	Targe	et ppt:
Test:	Source:	Targe	et ppt:
pH Adjustment? Y	N)		
·	A	В	С
Initial pH:			
Amount of HCI added:			
Final pH:			
Cl₂ Adjustment? Y	N)		
	A	В	С
Initial Free Cl ₂ :			
STS added:			
Final Free Cl ₂ :		<u> </u>	
Sample Aeration? Y	(A)		
Sample Aeration?	A	В	С
Initial D.O.			
Duration & Rate			
Final D.O.			
Subsamples for Addi	tional Chem	istry Require	ed? Y (N)
	r		\circ
Tech Initials A	B	_c	
	QC Ch		9/20/17
	Final Rev	iew: <u>> 1</u>	MINI

Appendix C

Chain-of-Custody Form

ALLY		Market State (State State Stat
		Turn Around Time
	Entahlpy Laboratory:	Normal:x
	WECK Laboratory:	RUSH (24 hr):
	Nautilus:x	3 Days:
	AIM:	5 Days:
	Other:	??? Days

		nga wigiga wigi i 2000 dan mingga wigina man	onto de la companya del companya de la companya de la companya del companya de la	CAR COLLABORATION OF THE OWNER.	маларистопо р мости	and the contract of the contra	lividi pulitier vidoeneo	irakenomany considera	Poplisie III i seksommenden er i	MANAGEMENT CONTRACTOR		(1500) TANAGO (GARAGO (GARAGO) (GARAGO	о овиналіў ўнюў Су	Agent - 2000 self-based and pro-	::: Days
Project Name: NPDES I			Project Manag		Peter Sh		Cont	act Inform	nation:	(7	60) 201-	-7777 <u></u>			
Special instruction: San one hour intervals. San	npled during off-sp	ec via autos Ilfill daily NF	sampler by a se PDES requireme	ries of g	rabs co	llected at				ANAI	LYSES				NOTES:
unadjusted. Start: 9/14					, p. c. 13 t	o be ruii	ation								
							rtilliz								
	G	lass=G Plast	ic=P				Chronic Fertilization								
	Yes=Y No=N A	Acid=A Base	=В	traffic constants of the second			Chror								
Drinl	king Water=DW Sea	awater=\$W \$	Soil=S		Pres		Urchin (
Sample ID	Date	-	Time	Sample	Preservative	Container	le Ur			i					
				Туре	ve ?	Туре	Purple 1								
M-001 (17- 2831)	9/14-15/2017	8:00	0-8:00	SW	N	4L CUBIE	Х								TDS - 34.01 ppt, EC - 52.9 mS/cm
														_	
Relinquished By:		Date:	Т	īme:		Received By:				Date:	Time:			Samp	le Condition Upon Receipt:
Mayor		9/16/1	7 1	342		Lmetil	Any	ونوون		1/6/17	13:40	X	Iced		Ambient orOC
AME #11		7/16/1	7 1	14.48		And	h	,	lago, a van voim da	9/16/17	14:48		Iced		Ambient or <u>↓ . ○</u> ºC

Nachlus ID: 17-1032

Appendix D

Reference Toxicant Test Data and Statistical Analyses

CETIS Summary Report

Report Date:

22 Sep-17 15:47 (p 1 of 1)

Test Code:

170916sprt | 08-9569-1329

			V					Tool Gode.	•	170	o rospit j o	J-5505-152
Echinoid Spe	erm Cell Fertiliza	ation Test	t 15C							Nautilu	s Environn	nental (CA
Batch ID: Start Date: Ending Date: Duration:	05-4590-7325 16 Sep-17 17:0 16 Sep-17 17:4 40m	08 P 48 S	est Type: rotocol: pecies: ource:	Fertilization EPA/600/R-95, Strongylocentr Pt. Loma	, ,	atus		Analyst: Diluent: Brine: Age:		ural Seawat Applicable	er	
Sample ID: Sample Date: Receive Date Sample Age:	: 16 Sep-17	M S	ode: laterial: ource: tation:	170916sprt Copper chlorid Reference Tox Copper Chlorid	icant		H	Client: Project:	Inte	rnal		
Comparison	Summary											
Analysis ID	Endpoint		NOEL		TOEL	PMSD	TU	Meth				
	Fertilization Ra	ite	20	40	28.28	8.25%		Dunr	nett M	lultiple Com	parison Tes	st
Point Estimat Analysis ID	te Summary Endpoint		Level	μg/L	95% LCL	95% UCL	TU	Meth	nod			
19-6375-1112	Fertilization Ra	te	EC50	56.97	55.27	58.72		Trim	med S	Spearman-k	Kärber	
Test Acceptal	bility											
Analysis ID	Endpoint		Attrib	ute	Test Stat	TAC Limi	its	Over	rlap	Decision		
17-0919-7416	Fertilization Ra	te	Contro	l Resp	0.946	0.7 - NL		Yes	***************************************	Passes A	cceptability	Criteria
19-6375-1112	Fertilization Ra	te	Contro	l Resp	0.946	0.7 - NL		Yes			cceptability	
17-0919-7416	Fertilization Ra	te	PMSD		0.08246	NL - 0.25		No		Passes A	cceptability	Criteria
Fertilization R	Rate Summary											
C-μg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std E	Ξrr	Std Dev	CV%	%Effect
0	Lab Control	5	0.946	0.9234	0.9686	0.93	0.97	0.008	3124	0.01817	1.92%	0.0%
10		5	0.83	0.752	0.908	0.72	0.87	0.028	311	0.06285	7.57%	12.26%
20		5	0.882	0.8395	0.9245	0.85	0.93	0.015	53	0.03421	3.88%	6.77%
40		5	0.852	0.7357	0.9683	0.7	0.94	0.041	188	0.09365	10.99%	9.94%
80		5	0.11	0.005008	0.215	0.03	0.23	0.037	782	0.08456	76.87%	88.37%
160		5	0	0	0	0	0	0		0		100.0%
Fertilization R	Rate Detail											
C-μg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5						
0	Lab Control	0.94	0.93	0.97	0.93	0.96				***************************************		***************************************
10		0.85	0.87	0.87	0.84	0.72						
20		0.85	0.85	0.88	0.93	0.9						
40		0.94	0.7	0.83	0.89	0.9						
80		0.23	0.03	0.04	0.16	0.09						
160		0	0	0	0	0						
		-	•		•	5						

Analyst: QA: AC9 08/17

Report Date:

22 Sep-17 15:47 (p 1 of 2)

Test Code:

170916sprt | 08-9569-1329

							Test				-9569-132
Echinoid Sper	rm Cell Fertiliza	tion Test 1	5C						Nautilus	Environm	nental (CA
Analysis ID:	17-0919-7416	End	point: Fer	tilization Rat	e		CETI	S Version:	CETISv1.	8.7	
Analyzed:	22 Sep-17 15:4	14 Ana	lysis: Par	ametric-Con	trol vs Treat	ments	Offic	ial Results:	: Yes		
Data Transfor	m	Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU
Angular (Corre	cted)	NA	C > T	NA	NA		8.25%	20	40	28.28	
Dunnett Multi	ple Comparisor	ı Test									
Control	vs C-µg/L		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision(α:5%)		
Lab Control	10*		3.111	2.305	0.140 8	0.0094	CDF	Significan	t Effect		
	20		1.908	2.305	0.140 8	0.1034	CDF	Non-Signi	ficant Effect		
	40*		2.478	2.305	0.140 8	0.0356	CDF	Significan	t Effect		
	80*		16.78	2.305	0.140 8	<0.0001	CDF	Significan	t Effect		
ANOVA Table						-					
Source	Sum Squ	ares	Mean Squ	are	DF	F Stat	P-Value	Decision(α:5%)		
Between	3.388831		0.8472077	,	4	91.63	<0.0001	Significan	t Effect		
Error	0.1849151	1	0.0092457	56	20						
Total	3.573746				24						
Distributional	Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision(α:1%)			
Variances	Bartlett E	quality of Va	ariance	6.867	13.28	0.1431	Equal Var	iances			
Distribution	Shapiro-\	Shapiro-Wilk W Normality				0.8076	Normal Di	stribution			
Fertilization R	ate Summary										
Fertilization R C-µg/L	ate Summary Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
C-µg/L		Count 5	Mean 0.946	95% LCL 0.9234	95% UCL 0.9686	Median 0.94	Min 0.93	Max 0.97	Std Err 0.008124	CV% 1.92%	%Effect 0.0%
C-µg/L	Control Type										
C-μg/L 0	Control Type	5	0.946	0.9234	0.9686	0.94	0.93	0.97	0.008124	1.92%	0.0%
C-μg/L 0 10	Control Type	5 5	0.946 0.83	0.9234 0.752	0.9686 0.908	0.94 0.85	0.93 0.72	0.97 0.87	0.008124 0.02811	1.92% 7.57%	0.0% 12.26%
C-μg/L 0 10 20	Control Type	5 5 5	0.946 0.83 0.882	0.9234 0.752 0.8395	0.9686 0.908 0.9245	0.94 0.85 0.88	0.93 0.72 0.85	0.97 0.87 0.93	0.008124 0.02811 0.0153	1.92% 7.57% 3.88%	0.0% 12.26% 6.77%
C-μg/L 0 10 20 40	Control Type	5 5 5 5	0.946 0.83 0.882 0.852	0.9234 0.752 0.8395 0.7357	0.9686 0.908 0.9245 0.9683	0.94 0.85 0.88 0.89	0.93 0.72 0.85 0.7	0.97 0.87 0.93 0.94	0.008124 0.02811 0.0153 0.04188	1.92% 7.57% 3.88% 10.99%	0.0% 12.26% 6.77% 9.94%
C-μg/L 0 10 20 40 80 160	Control Type	5 5 5 5 5 5	0.946 0.83 0.882 0.852 0.11	0.9234 0.752 0.8395 0.7357 0.005008	0.9686 0.908 0.9245 0.9683 0.215	0.94 0.85 0.88 0.89 0.09	0.93 0.72 0.85 0.7 0.03	0.97 0.87 0.93 0.94 0.23	0.008124 0.02811 0.0153 0.04188 0.03782	1.92% 7.57% 3.88% 10.99%	0.0% 12.26% 6.77% 9.94% 88.37%
C-μg/L 0 10 20 40 80 160 Angular (Corre	Control Type Lab Control	5 5 5 5 5 5	0.946 0.83 0.882 0.852 0.11	0.9234 0.752 0.8395 0.7357 0.005008	0.9686 0.908 0.9245 0.9683 0.215	0.94 0.85 0.88 0.89 0.09	0.93 0.72 0.85 0.7 0.03	0.97 0.87 0.93 0.94 0.23	0.008124 0.02811 0.0153 0.04188 0.03782	1.92% 7.57% 3.88% 10.99%	0.0% 12.26% 6.77% 9.94% 88.37%
C-μg/L 0 10 20 40 80 160 Angular (Corre	Control Type Lab Control ected) Transfor	5 5 5 5 5 5 5	0.946 0.83 0.882 0.852 0.11 0	0.9234 0.752 0.8395 0.7357 0.005008 0	0.9686 0.908 0.9245 0.9683 0.215	0.94 0.85 0.88 0.89 0.09	0.93 0.72 0.85 0.7 0.03	0.97 0.87 0.93 0.94 0.23	0.008124 0.02811 0.0153 0.04188 0.03782 0	1.92% 7.57% 3.88% 10.99% 76.87%	0.0% 12.26% 6.77% 9.94% 88.37% 100.0%
C-μg/L 0 10 20 40 80 160 Angular (Corre	Control Type Lab Control ected) Transfor Control Type	5 5 5 5 5 5 med Summ	0.946 0.83 0.882 0.852 0.11 0	0.9234 0.752 0.8395 0.7357 0.005008 0	0.9686 0.908 0.9245 0.9683 0.215 0	0.94 0.85 0.88 0.89 0.09 0	0.93 0.72 0.85 0.7 0.03 0	0.97 0.87 0.93 0.94 0.23 0	0.008124 0.02811 0.0153 0.04188 0.03782 0	1.92% 7.57% 3.88% 10.99% 76.87%	0.0% 12.26% 6.77% 9.94% 88.37% 100.0%
C-μg/L 0 10 20 40 80 160 Angular (Corre	Control Type Lab Control ected) Transfor Control Type	5 5 5 5 5 5 med Summ Count	0.946 0.83 0.882 0.852 0.11 0 mary Mean 1.339	0.9234 0.752 0.8395 0.7357 0.005008 0 95% LCL 1.287	0.9686 0.908 0.9245 0.9683 0.215 0 95% UCL 1.391	0.94 0.85 0.88 0.89 0.09 0	0.93 0.72 0.85 0.7 0.03 0	0.97 0.87 0.93 0.94 0.23 0	0.008124 0.02811 0.0153 0.04188 0.03782 0 Std Err 0.01883	1.92% 7.57% 3.88% 10.99% 76.87% CV% 3.14%	0.0% 12.26% 6.77% 9.94% 88.37% 100.0% %Effect
C-µg/L 0 10 20 40 80 160 Angular (Corre	Control Type Lab Control ected) Transfor Control Type	5 5 5 5 5 5 med Summ Count 5	0.946 0.83 0.882 0.852 0.11 0 ary Mean 1.339 1.15	0.9234 0.752 0.8395 0.7357 0.005008 0 95% LCL 1.287 1.052	0.9686 0.908 0.9245 0.9683 0.215 0 95% UCL 1.391 1.248	0.94 0.85 0.88 0.89 0.09 0 Median 1.323 1.173	0.93 0.72 0.85 0.7 0.03 0 Min 1.303 1.013	0.97 0.87 0.93 0.94 0.23 0 Max 1.397 1.202	0.008124 0.02811 0.0153 0.04188 0.03782 0 Std Err 0.01883 0.03516	1.92% 7.57% 3.88% 10.99% 76.87% CV% 3.14% 6.84%	0.0% 12.26% 6.77% 9.94% 88.37% 100.0% %Effect 0.0% 14.13%
С-µg/L 0 10 20 40 80 160 Angular (Corre C-µg/L 0 10 20	Control Type Lab Control ected) Transfor Control Type	5 5 5 5 5 5 med Summ Count 5 5	0.946 0.83 0.882 0.852 0.11 0 ary Mean 1.339 1.15 1.223	0.9234 0.752 0.8395 0.7357 0.005008 0 95% LCL 1.287 1.052 1.155	0.9686 0.908 0.9245 0.9683 0.215 0 95% UCL 1.391 1.248 1.291	0.94 0.85 0.88 0.89 0.09 0 Median 1.323 1.173 1.217	0.93 0.72 0.85 0.7 0.03 0 Min 1.303 1.013 1.173	0.97 0.87 0.93 0.94 0.23 0 Max 1.397 1.202 1.303	0.008124 0.02811 0.0153 0.04188 0.03782 0 Std Err 0.01883 0.03516 0.0246	1.92% 7.57% 3.88% 10.99% 76.87% CV% 3.14% 6.84% 4.5%	0.0% 12.26% 6.77% 9.94% 88.37% 100.0% %Effect 0.0% 14.13% 8.67%

CETIS Analytical Report

Report Date: Test Code: 22 Sep-17 15:47 (p 2 of 2) 170916sprt | 08-9569-1329

Echinoid Sperm Cell Fertilization Test 15C Nautilus Environmental (CA) Analysis ID: 17-0919-7416 Endpoint: Fertilization Rate **CETIS Version:** CETISv1.8.7 Analyzed: 22 Sep-17 15:44 Analysis: Parametric-Control vs Treatments Official Results: Yes Graphics 1.0 F 0.20 0.9 0.15 Reject Null Fertilization Rate 0.10 0.7 0.6 0.5 0.4 -0.05 -0.10 0.2 -0.15 0.1 0.0 -0.20 0 LC 10 20 80 160 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 C-µg/L Rankits

CETIS Analytical Report

Report Date:

22 Sep-17 15:47 (p 1 of 1)

Test Code:

170916sprt | 08-9569-1329

Echinoid Sperm Cell Fertilization Test 15C

Nautilus Environmental (CA)

Analysis ID: 19-6375-1112 Analyzed:

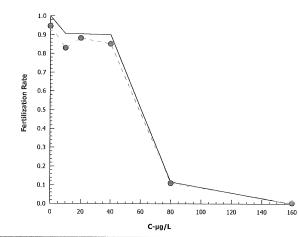
22 Sep-17 15:44

Endpoint: Fertilization Rate Analysis:

Trimmed Spearman-Kärber

CETIS Version: Official Results:

CETISv1.8.7


Yes

Trimmed Spearman-Kärber Estimates

Threshold Option	Threshold	Trim	Mu	Sigma	EC50	95% LCL	95% UCL
Control Threshold	0.054	9.51%	1.756	0.006577	56.97	55.27	58.72

Fertilization	on Rate Summary	Calculated Variate(A/B)									
C-µg/L	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Lab Control	5	0.946	0.93	0.97	0.008124	0.01817	1.92%	0.0%	473	500
10		5	0.83	0.72	0.87	0.02811	0.06285	7.57%	12.26%	415	500
20		5	0.882	0.85	0.93	0.0153	0.03421	3.88%	6.77%	441	500
40		5	0.852	0.7	0.94	0.04188	0.09365	10.99%	9.94%	426	500
80		5	0.11	0.03	0.23	0.03782	0.08456	76.87%	88.37%	55	500
160		5	0	0	0	0	0		100.0%	0	500

Graphics

Report Date:

22 Sep-17 15:46 (1 of 1)

Echinoid Sperm Cell Fertilization Test 15C

Mean:

Sigma:

49.71

16.47

Count:

CV:

20

33.10%

Nautilus Environmental (CA)

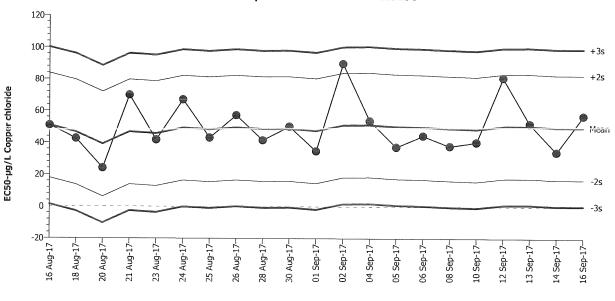
Test Type: Fertilization

Protocol: EPA/600/R-95/136 (1995)

Organism: Strongylocentrotus purpuratus (Purpl

Endpoint: Fertilization Rate

Source:


Material: Copper chloride

-3s Action Limit: 0.3036

+3s Action Limit: 99.12

Reference Toxicant-REF

Echinoid Sperm Cell Fertilization Test 15C

-2s Warning Limit:

+2s Warning Limit:

16.77

82.65

Quality Control Data											
Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2017	Aug	16	16:34	50.82	1.107	0.06721			16-3259-1018	06-7497-1035
2			18	14:09	42.53	-7.179	-0.4359			12-6613-4538	02-2322-5589
3			20	14:52	24.05	-25.66	-1.558			06-9655-0092	05-8785-3700
4			21	14:46	69.95	20.24	1.229			08-4756-2919	20-2992-4955
5			23	16:14	41.72	-7.993	-0.4853			02-7595-3678	15-3490-2746
6			24	16:11	67.1	17.39	1.056			04-7651-5518	20-0883-0005
7			25	14:48	43.11	-6.6	-0.4008			06-8816-1100	09-0830-4014
8			26	16:00	57.24	7.531	0.4573			10-2039-5656	15-8794-0305
9			28	14:56	41.55	-8.158	-0.4953			08-1525-2751	10-7829-2432
10			30	16:38	50.21	0.5019	0.03047			08-1199-3706	11-0543-3886
11		Sep	1	15:27	34.79	-14.92	-0.9056			13-1244-6646	21-1567-7550
12			2	10:53	89.99	40.28	2.446	(+)		16-4202-9692	18-8681-1855
13			4	16:10	53.77	4.062	0.2466			12-2973-1405	10-6032-1229
14			5	17:07	37.36	-12.35	-0.7499			13-1627-7974	14-5447-1160
15			6	17:15	44.41	-5.297	-0.3216			05-5533-8557	16-8161-1582
16			8	15:48	37.91	-11.8	-0.7163			18-6871-7794	04-4479-5076
17			10	14:25	40.4	-9.308	-0.5651			11-6871-9499	08-4248-1228
18			12	15:51	81.07	31.36	1.904			20-0603-9450	06-1182-7961
19			13	19:07	52.04	2.326	0.1412			01-4575-6189	02-4618-7964
20			14	15:24	34.24	-15.47	-0.9396			11-2846-3680	13-8128-7168
21			16	17:08	56.97	7.26	0.4408			08-9569-1329	19-6375-1112

CETIS Test Data Worksheet

Report Date: Test Code:

15 Sep-17 16:37 (p 1 of 1)

08-9569-1329/170916sprt

Echinoid Sperm Cell Fertilization Test 15C

Nautilus Environmental (CA)

Start Date: End Date:

16 Sep-17 16 Sep-17

Species: Strongylocentrotus purpuratus Protocol: EPA/600/R-95/136 (1995)

Sample Code: Sample Source: Reference Toxicant

170916sprt

C-µg/L	Code	Rep	Pos	# Counted	# Fertilized	loride Sample Station: Copper Chloride Notes
			1	100		
			2	100	93	JS 9/21/17
			3		93	
					87	
			4		90	
			5		4	
			6		85	
			7		85 23 93	
			8		93	
			9		85	
			10		9	
			11		Ö	
			12		\cap	
			13		90	
			14		39	
			15		90 89 85	
	T		16		0	
			17		83	
			18			
			19		94	
			20	_	77	
			21		96	
			22		72 96 3	
			23		-	
			24		88 16	
	-		25		7)	
			26			
			27		37	
	+		28		84	
					97	
	-		29 30		70 94	

CETIS Test Data Worksheet

Report Date: Test Code:

15 Sep-17 16:37 (p 1 of 1) 08-9569-1329/170916sprt

Echinoid Sperm Cell Fertilization Test 15C

Nautilus Environmental (CA)

Start Date: 16 Sep-17 End Date: Sample Date: 16 Sep-17

16 Sep-17

Species: Strongylocentrotus purpuratus

Protocol: EPA/600/R-95/136 (1995) Material: Copper chloride

Sample Code: Sample Source: Reference Toxicant

170916sprt

Sample Station: Copper Chloride

ample Date					ar. Copper chior	Sample Station: Copper Chloride
C-µg/L	Code	Rep	Pos	# Counted	# Fertilized	Notes
0	LC	1	30		-	
0	LC	2	2			
0	LC	3	28			
0	LC	4	8			
0	LC	5	21	100	99	AD 9/16/17
10		1	6	1		
10		2	26			
10		3	3	100	84	
10		4	27			
10		5	20	100	82	
20		1	15			
20		2	9			
20		3	23			
20		4	1			
20		5	4	100	90	
40		1	18		•	
40		2	29			
40		3	17			
40		4	14	100	90	
40		5	13	100	86	
80		1	7			
80		2	22			
80		3	5			
80		4	24			
80		5	10	100	29	
160		1	16			
160		2	11			
160		3	25			
160		4	19			
160		5	12	100	0	

OC: AD

Analyst: 400 QA409/28/11

Marine Chronic Bioassay

Water Quality Measurements

@11 /
Client ·

Internal

Test Species: S. purpuratus

Sample ID:

CuCl₂

8 O F Start Date/Time: 9/16/2017

Test No:

170916sprt

End Date/Time: 9/16/2017

Dilutions made by:

High conc. made (μg/L):

160

Vol. Cu stock added (mL): Final Volume (mL):

7.8 500 10200

Cu stock concentration (µg/L):

Analyst:

21 Initial Readings DO Concentration рΗ Salinity Temperature (μg/L) (mg/L) (units) (°C) (ppt) Lab Control 8.6 8.13 14.8 33.4 8,5 14.8 10 33.7 8.09 33.6 14.7 20 8.4 8.09 14.6 8.4 40 33.5 8,09 8.4 80 8.09 33.4 14.6 33.5 8.4 8.09 14.6 160

Comments:		
QC Check:	EG 9/22/17	Final Review: AC 9/28/17

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

Marine Chronic Bioassay

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

Echinoderm Sperm-Cell Fertilization Worksheet

Client: Sample ID: Test No.:	Internal CuClz 170916sprt		 	End Date/Tii Spec	me: 9/16/2017 / 1708 me: 9/16/2017 / 1748 iess. Jannary
Tech initials: Injection Time:	77D 11025			Animal Sour	
Sperm Absorbance at 4	00 nm: <u>0.95</u>	(target range of	0.8 - 1.0 for dens	sity of 4x10 ⁶ sperm/	ml)
Eggs Counted:	$\frac{97}{100}$ (ta)	ean: A x street counts of 80 eggs fiter slide for a final den	per vertical pass o	n Sedgwick-	
Initial density: Final density:	4000 eggs/m	- 1.0 par	ution factor t egg stock ts seawater	egg stock	<u>00 </u>
Prepare the embryo sto existing stock (1 part) ar			T. For example, it	f the dilution factor is	s 2.25, use 100 ml of
Rangefinder Test: ml Sperm Stock ml Seawater	50	00:1 1200:1 40 30 10 20	20	atio 00:1 10 5.0 40 45	100:1 50:1 2.5 1.25 47.5 48.75
Sperm Added (100 µl): Eggs Added (0.5 ml): Test Ended:	Time 1435 1450 1700	Rangefinder Rat	io: <u>Fert.</u> 77 81,90	Unfert. 23 19110 4	
NOTE: Choose a spern this range, choose the ro organism health, stage of	atio closest to 90 perce	ent unless professiona	veen 80 and 90 p al judgment dicta	ercent. If more thar tes consideration of	n one concentration is within fother factors (e.g.,
Definitive Test		Sperm:Egg Ratio	o Used: <u> 50</u>	,)	
Sperm Added (100 µl): Eggs Added (0.5 ml): Test Ended:	Time 1108 1128 1148	QC1 QC2 Egg Control 1 Egg Control 2	Fert. 90	Unfert. 12 10 100 100	
Comments:					
QC Check:	EG 9/22/	17		Final Revie	ew: AC 9/28/17

Appendix E

Qualifier Codes

Glossary of Qualifier Codes:

- Q1 Temperatures out of recommended range; corrective action taken and recorded in Test Temperature Correction Log
- Q2 Temperatures out of recommended range; no action taken, test terminated same day
- Q3 Sample aerated prior to initiation or renewal due to dissolved oxygen (D.O.) levels below 6.0 mg/L
- Q4 Test aerated; D.O. levels dropped below 4.0 mg/L
- Q5 Test initiated with aeration due to an anticipated drop in D.O.
- Q6 Airline obstructed or fell out of replicate and replaced; drop in D.O. occurred
- Q7 Salinity out of recommended range
- Q8 Spilled test chamber/ Unable to recover test organism(s)
- Q9 Inadequate sample volume remaining, 50% renewal performed
- Q10 Inadequate sample volume remaining, no renewal performed
- Q11 Sample out of holding time; refer to QA section of report
- Q12 Replicate(s) not initiated; excluded from data analysis
- Q13 Survival counts not recorded due to poor visibility or heavy debris
- Q14 D.O. percent saturation was checked and was ≤ 110%
- Q15 Did not meet minimum test acceptability criteria. Refer to QA section of report.
- Q16 Percent minimum significant difference (PMSD) was <u>below</u> the lower bound limit for acceptability. This indicates that statistics may be over-sensitive in detecting a difference from the control due to low variability in the data set.
- Q17 Percent minimum significant difference (PMSD) was <u>above</u> the upper bound limit for acceptability. This indicates that statistics may be under-sensitive in detecting a difference from the control due to high variability in the data set.
- Q18 Incorrect Entry
- Q19 Illegible Entry
- Q20 Miscalculation
- Q21 Other (provide reason in comments section)
- Q22 Greater than 10% mortality observed upon receipt and/or in holding prior to test initiation.
 Organisms acclimated to test conditions at Nautilus and ultimately deemed fit to use for testing.
- Q23 Test or ganisms r eceived at a <u>temperature</u> greater than 3°C ou tside the r ecommended t est temperature range. However, due to age-specific protocol requirements and/or sample holding time constraints, the organisms were used to initiate tests upon the day of arrival. O rganisms were acclimated to the appropriate test conditions upon receipt and prior to test initiation.
- Q24 Test organisms received at <u>salinity</u> greater than 3 ppt outside of the recommended test salinity range. H owever, due t o age -specific pr otocol r equirements and/ or s ample ho lding t ime constraints, the organisms were used to initiate tests upon the day of arrival. Organisms were acclimated to the appropriate test conditions upon receipt and prior to test initiation.

Updated: 6/30/15