

Chronic Toxicity Test Results for the Carlsbad Desalination Plant

Sample ID: M-001 (Daily) Sample Collection Date: August 25, 2017

Prepared for: IDE AMERICAS, Inc.

4590 Carlsbad Boulevard Carlsbad, CA 92008

Prepared by: Nautilus Environmental

Submitted: September 7, 2017

Data Quality Assurance:

- Nautilus Environmental is accredited in accordance with NELAP by the State of Oregon Environmental Laboratory Accreditation Program (Certificate No. 4053). It is also certified by the State of California Department of Health Services Environmental Laboratory Accreditation Program (Certificate No. 1802) and the State of Washington Department of Ecology (Lab ID C552).
- All data have been reviewed and verified.
- All test results have met minimum test acceptability criteria under their respective EPA protocols, unless otherwise noted in this report.
- o All test results have met internal Quality Assurance Program requirements.

California 4340 Vandever Avenue San Diego, California 92120

858.587.7333 fax: 858.587.3961 Results verified by: ______ Adrienne Cibor

EXECUTIVE SUMMARY

CHRONIC TOXICITY TESTING CARLSBAD DESALINATION PLANT — AUGUST 2017 ORDER NO. R9-2006-0065; NPDES NO. CA0109223

Sampling Date: August 25, 2017

Test Date: August 25, 2017

Sample ID: M-001 (pre-treatment off-spec period)

Effluent Limitation: 16.5 TU_c

Results Summary:

	Test Date	Effluent Resu		Effluent Limitation
Bioassay Type: Urchin Fertilization		<u>NOEC</u>	<u>TU</u> c	Met? (Yes/No)
Ordini rei tilization	8/25/2017	6.06	16.5	Yes

Test ID: 1708-S210

Client: IDE Americas, Inc. Sample ID: M-001 Sample Date: August 25, 2017

INTRODUCTION

A discharge sample was collected in August 2017 for the Poseidon Resources (Channelside) LLC, Carlsbad Desalination Project (CDP) permit for daily chronic toxicity monitoring purposes. The discharge sample was collected from the CDP M-001 discharge monitoring point during a period of off-spec plant operation. Chronic toxicity testing for the effluent sample was conducted during this time according to the permit that was adopted in 2006 (Order No. R9-2006-0065). Bioassay testing was conducted at the Nautilus Environmental (Nautilus) laboratory in San Diego, California on August 25, 2017 using the purple urchin (*Strongylocentrotus purpuratus*) chronic fertilization test.

MATERIALS AND METHODS

Sample collection and delivery were performed by IDE Americas, Inc. (IDE) personnel. Following arrival at Nautilus, an aliquot of the water sample was poured off and the following water quality parameters were measured: pH, dissolved oxygen (DO), temperature, salinity, alkalinity, and total chlorine. The sample was stored at 4° C in the dark until used for testing. A summary of the sample collection and receipt information is provided in Table 1, and water quality parameters measured upon receipt at Nautilus are presented in Table 2. Testing was conducted in accordance with the protocols described in USEPA 1995, and the methods are summarized in Table 3.

Table 1. Sample Information

Client/Project:	IDE Americas, Inc./Carlsbad Desalination Plant
Sample ID:	M-001 (pre-treatment off-spec period)
Monitoring Period:	August 2017
Sample Material:	Facility Effluent
Sampling Method:	24hr Composite
Sample Collection Date, Time:	8/25/17, 08:00
Sample Receipt Date, Time:	8/25/17, 12:53

Table 2. Water Quality Measurements for the M-001 Sample upon Receipt

Sample Collection	рН	DO	Temp	Salinity	Alkalinity	Total Chlorine
Date		(mg/L)	(°C)	(ppt)	(mg/L as CaCO₃)	(mg/L)
8/25/17	8.04	8.1	4.0	32.6	104	0.02

TOXICITY SUMMARY REPORT

Client: IDE Americas, Inc. Test ID: 1708-S210 Sample ID: M-001 Sample Date: August 25, 2017

Table 3. Echinoderm Fertilization Chronic Bioassay Specifications

Test Date, Times: 8/25/17, 14:48 through 15:28

Test Organism: Strongylocentrotus purpuratus (purple sea urchin) Test Organism Source: Field-collected off Point Loma in San Diego, CA

Lab Control/Dilution Water: Natural seawater (source: Scripps Institution of Oceanography inlet,

34±2 parts per thousand (ppt); 20-µm filtered

Test Concentrations: 2.5, 5.0, 6.06, 10, and 15 percent M-001 sample; lab control

Number of Replicates, Organisms

per Replicate:

5 replicates, 2000 eggs per replicate. Sperm to egg ratio determined

before each test with a preliminary rangefinding test.

Test Chamber Type, Volume per

Replicate:

Glass scintillation vial containing 10 mL of test solution

Protocol Used: EPA/600/R-95/136, 1995 West Coast Marine Chronic

Test Type: Fertilization; 20-min sperm exposure to effluent followed by a 20-

min fertilization period

Mean fertilization ≥70% in the control, and percent minimum Acceptability Criteria:

significant difference (PMSD) value <25.

Copper chloride Reference Toxicant Testing:

Statistical Analysis Software: **CETIS™**, version 1.8.7.20

Statistical analyses were conducted using EPA flowchart specifications as outlined in the test guidance manual (USEPA 1995). Organism performance in the sample dilution series was compared to that observed in the laboratory control exposure. Results were used to calculate the No Observed Effect Concentration (NOEC) and chronic toxic unit (TUc) values.

Results were also analyzed using the USEPA's Test of Significant Toxicity (TST) approach specified in National Pollutant Discharge Elimination System Test of Significant Toxicity Implementation Document (USEPA 2010). Notably, the California State Water Resources Control Board (SWRCB) published a Draft Policy for Toxicity Assessment and Control (SWRCB 2012), which includes the TST as an alternative method to evaluate toxicity data. This approach applies a modified t-test that takes into account both the statistical power of the test and the magnitude of biological effects in determining the presence of a response. For this sample, the in-stream waste concentration (IWC) is 6.06 percent unadjusted effluent; results are reported as "Pass" if a sample is considered non-toxic at the IWC according to the TST calculation, or "Fail" if considered toxic at the IWC according to the TST. As the TST is not included in the CDP permit at this time, the TST analysis was performed for comparison purposes only.

Test ID: 1708-S210

Client: IDE Americas, Inc. Sample ID: M-001 Sample Date: August 25, 2017

RESULTS

Statistically significant decreases in the fertilization rate were observed in the 10 and 15 percent effluent concentrations compared to the lab control. The NOEC is reported as 6.06 and the TU_c is 16.5, which meets the maximum effluent limitation of 16.5 for this permit. None of the effluent concentrations were significantly reduced according to the TST analysis. Statistical results are summarized in Table 4, and detailed test results are summarized in Table 5. Raw test data and full statistical analyses can be found in Appendix A. Sample receipt information and copies of the chain-of-custody form are in Appendices B and C, respectively.

Table 4. Statistical Results for M-001 Purple Urchin Fertilization Testing

Sample I D	NOEC (% sample)	LOEC (% sample)	EC ₅₀ (% sample)		TST Result (Pass/Fail)	Percent Effect at IWC
M-001	6.06	10	>15	16.5	Pass	6.9

NOEC = No Observed Effect Concentration

LOEC = Lowest Observed Effect Concentration

 EC_{50} = Concentration expected to cause an adverse effect to 50 percent of the test organisms

 $TU_c = Chronic Toxic Unit: 100 \div NOEC$

TST: Pass = sample is non-toxic at the IWC according to the TST calculation; Fail = sample is toxic at the IWC according to the TST calculation. The TST analysis is not in the existing CDP permit; TST analysis is included here for comparison purposes only. Percent effect (PE) from control is calculated as: PE= ((mean response in control-mean response in the IWC)/mean response in control) *100. A negative PE results when organism performance in the sample is greater than that in the control.

Table 5. Detailed Results of Purple Urchin Fertilization Testing for the M-001 Sample

Test Concentration (% Sample)	Mean Percent Fertilization
Lab Control	86.4
2.5	86.2
5.0	85.6
6.06	80.4
10	75.6*
15	73.6*

^{*}An asterisk indicates a statistically significant decrease compared to the lab control

Client: IDE Americas, Inc. Test ID: 1708-S210 Sample ID: M-001

Sample Date: August 25, 2017

QUALITY ASSURANCE

The sample was received on the day of collection and was within the appropriate temperature range. The test was initiated within the 36-hour holding time. The lab control met all test acceptability criteria, and the PMSD value, which is a measure of test variability, was within the acceptable limits. Statistical analyses followed USEPA flowchart selections and dose-response relationships were reviewed to ensure the reliability of the data. Based on the dose responses observed during testing, the calculated effect concentrations reported are deemed reliable. Additionally, appropriate alpha levels were used for statistical analyses according to the TST Implementation Document guidelines (USEPA 2010).

Results for the concurrent reference toxicant test used to monitor laboratory performance and test organism sensitivity met all test acceptability criteria. The median effect (EC50) value calculated for this test was within two standard deviations (2SD) of the historical mean for our laboratory, indicating organisms were of typical sensitivity to copper. Results for the reference toxicant test are summarized in Table 6 and presented in full in Appendix D. A list of qualifier codes can be found in Appendix E.

Table 6. Urchin Fertilization Reference Toxicant Test Results

Test Date	EC ₅₀ (µg/L Copper)	Historical Mean EC ₅₀ ±2 SD (μg/L Copper)	CV (%)
8/25/17	43.1	49.6 ± 40.7	41.0

 EC_{50} = Concentration expected to cause an adverse effect to 50 percent of the test organisms Historical Mean EC $_{50} \pm 2$ SD = Mean of historical test results plus or minus two standard deviations CV = Coefficient of Variation

TOXICITY SUMMARY REPORT

Test ID: 1708-S210

Client: IDE Americas, Inc.

Sample ID: M-001

Sample Date: August 25, 2017

REFERENCES

California Regional Water Quality Control Board Region 9, San Diego (RWQCB) 2006. Waste Discharge Requirements for the Poseidon Resources (Channelside) LLC, Carlsbad Desalination Project, Discharge to the Pacific Ocean via the Encina Power Station Discharge Channel. Order No. R9-2006-0065, NPDES No. CA109223. June 2006.

- California State Water Resources Control Board (SWRCB) 2012. Draft Policy for Toxicity Assessment and Control. June 2012. Sacramento, CA.
- Tidepool Scientific Software. 2000-2013. CETIS™ Comprehensive Environmental Toxicity Information System Software, Version 1.8.7.20
- USEPA. 1995. Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms. EPA/600/R-95/136.
- USEPA. 2010. National Pollutant Discharge Elimination System Test of Significant Toxicity Implementation Document. EPA/833/R-10/003. June 2010.

Appendix A

Test Data and Statistical Analyses

CETIS Summary Report

Report Date:

29 Aug-17 16:02 (p 1 of 1)

Test Code:

1708-S210 | 19-4640-9870

Echinoid Spe	rm Cell Fertiliza	ition Te	st 15C						Nautilu	s Environi	mental (CA)
Batch ID: Start Date: Ending Date: Duration:	18-2252-8681 25 Aug-17 14:4 25 Aug-17 15:2 40m	18 28	Test Type: Protocol: Species: Source:	Fertilization EPA/600/R-95/ Strongylocentro Pt. Loma		tus	Di	ine: N	aboratory Sea ot Applicable	water	
l '	14-5791-7667 25 Aug-17 08:0 : 25 Aug-17 12:5 7h (4°C)	00 53	Code: Material: Source: Station:	17-0943 Facility Effluent IDE Americas, M-001 (Daily)					DE arlsbad Desa	Plant	
Comparison S	Summary										
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	ΤU	Method	I		
17-4041-4112	Fertilization Ra	te	6.06	10	7.785	7.84%	16.5		Multiple Com	parison Te	st
Point Estimat	e Summary										2
Analysis ID	Endpoint		Level	%	95% LCL	95% UCL	TU	Method	İ		
10-4607-4537	Fertilization Ra	te	EC25 EC50	>15 >15	N/A N/A	N/A N/A	<6.667 <6.667		nterpolation (I	CPIN)	
Test Acceptal	oility										
Analysis ID	Endpoint		Attrib	ute	Test Stat	TAC Limi	ts	Overlag	Decision		
10-4607-4537	Fertilization Rat	te	Contro	ol Resp	0.864	0.7 - NL		Yes		cceptability	Criteria
	Fertilization Rat		Contro	ol Resp	0.864	0.7 - NL		Yes		cceptability	
17-4041-4112	Fertilization Rat	ie	PMSD)	0.07843	NL - 0.25		No	Passes A	cceptability	Criteria
Fertilization R	ate Summary										
C-%	0 1 1-										
	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Control	5	Mean 0.864	95% LCL 0.8139	95% UCL 0.9141	Min 0.8	Max 0.9	Std Err 0.01806		CV%	%Effect 0.0%
2.5		5 5	0.864 0.862	0.8139 0.7915					0.04037		
2.5 5		5 5 5	0.864 0.862 0.856	0.8139 0.7915 0.8044	0.9141	0.8 0.78 0.82	0.9	0.01806	0.04037	4.67%	0.0%
2.5 5 6.06		5 5 5 5	0.864 0.862 0.856 0.804	0.8139 0.7915 0.8044 0.7524	0.9141 0.9325 0.9076 0.8556	0.8 0.78 0.82 0.74	0.9 0.92	0.01806 0.02538	0.04037 0.05675	4.67% 6.58%	0.0% 0.23%
2.5 5 6.06 10		5 5 5 5 5	0.864 0.862 0.856 0.804 0.756	0.8139 0.7915 0.8044 0.7524 0.6899	0.9141 0.9325 0.9076 0.8556 0.8221	0.8 0.78 0.82 0.74 0.68	0.9 0.92 0.92 0.85 0.83	0.01806 0.02538 0.0186	0.04037 0.05675 0.04159 0.04159	4.67% 6.58% 4.86%	0.0% 0.23% 0.93%
2.5 5 6.06		5 5 5 5	0.864 0.862 0.856 0.804	0.8139 0.7915 0.8044 0.7524	0.9141 0.9325 0.9076 0.8556	0.8 0.78 0.82 0.74	0.9 0.92 0.92 0.85	0.01806 0.02538 0.0186 0.0186	0.04037 0.05675 0.04159 0.04159 0.0532	4.67% 6.58% 4.86% 5.17%	0.0% 0.23% 0.93% 6.94%
2.5 5 6.06 10 15	Lab Control	5 5 5 5 5	0.864 0.862 0.856 0.804 0.756	0.8139 0.7915 0.8044 0.7524 0.6899	0.9141 0.9325 0.9076 0.8556 0.8221	0.8 0.78 0.82 0.74 0.68	0.9 0.92 0.92 0.85 0.83	0.01806 0.02538 0.0186 0.0186 0.02379	0.04037 0.05675 0.04159 0.04159 0.0532	4.67% 6.58% 4.86% 5.17% 7.04%	0.0% 0.23% 0.93% 6.94% 12.5%
2.5 5 6.06 10 15 Fertilization R	Lab Control ate Detail Control Type	5 5 5 5 5 5 7	0.864 0.862 0.856 0.804 0.756	0.8139 0.7915 0.8044 0.7524 0.6899 0.6748	0.9141 0.9325 0.9076 0.8556 0.8221	0.8 0.78 0.82 0.74 0.68	0.9 0.92 0.92 0.85 0.83	0.01806 0.02538 0.0186 0.0186 0.02379	0.04037 0.05675 0.04159 0.04159 0.0532	4.67% 6.58% 4.86% 5.17% 7.04%	0.0% 0.23% 0.93% 6.94% 12.5%
2.5 5 6.06 10 15 Fertilization R C-%	Lab Control	5 5 5 5 5 5	0.864 0.862 0.856 0.804 0.756 0.736	0.8139 0.7915 0.8044 0.7524 0.6899 0.6748	0.9141 0.9325 0.9076 0.8556 0.8221 0.7972	0.8 0.78 0.82 0.74 0.68 0.66	0.9 0.92 0.92 0.85 0.83	0.01806 0.02538 0.0186 0.0186 0.02379	0.04037 0.05675 0.04159 0.04159 0.0532	4.67% 6.58% 4.86% 5.17% 7.04%	0.0% 0.23% 0.93% 6.94% 12.5%
2.5 5 6.06 10 15 Fertilization R C-% 0 2.5	Lab Control ate Detail Control Type	5 5 5 5 5 5 7	0.864 0.862 0.856 0.804 0.756 0.736	0.8139 0.7915 0.8044 0.7524 0.6899 0.6748	0.9141 0.9325 0.9076 0.8556 0.8221 0.7972	0.8 0.78 0.82 0.74 0.68 0.66	0.9 0.92 0.92 0.85 0.83	0.01806 0.02538 0.0186 0.0186 0.02379	0.04037 0.05675 0.04159 0.04159 0.0532	4.67% 6.58% 4.86% 5.17% 7.04%	0.0% 0.23% 0.93% 6.94% 12.5%
2.5 5 6.06 10 15 Fertilization R C-%	Lab Control ate Detail Control Type	5 5 5 5 5 5 7 8 8 Rep 1	0.864 0.862 0.856 0.804 0.756 0.736 Rep 2	0.8139 0.7915 0.8044 0.7524 0.6899 0.6748 Rep 3	0.9141 0.9325 0.9076 0.8556 0.8221 0.7972 Rep 4	0.8 0.78 0.82 0.74 0.68 0.66	0.9 0.92 0.92 0.85 0.83	0.01806 0.02538 0.0186 0.0186 0.02379	0.04037 0.05675 0.04159 0.04159 0.0532	4.67% 6.58% 4.86% 5.17% 7.04%	0.0% 0.23% 0.93% 6.94% 12.5%
2.5 5 6.06 10 15 Fertilization R C-% 0 2.5	Lab Control ate Detail Control Type	5 5 5 5 5 5 5 7 8 8 8 9 1 0.85 0.78	0.864 0.862 0.856 0.804 0.756 0.736 Rep 2 0.88 0.83	0.8139 0.7915 0.8044 0.7524 0.6899 0.6748 Rep 3 0.89	0.9141 0.9325 0.9076 0.8556 0.8221 0.7972 Rep 4 0.8	0.8 0.78 0.82 0.74 0.68 0.66 Rep 5 0.9	0.9 0.92 0.92 0.85 0.83	0.01806 0.02538 0.0186 0.0186 0.02379	0.04037 0.05675 0.04159 0.04159 0.0532	4.67% 6.58% 4.86% 5.17% 7.04%	0.0% 0.23% 0.93% 6.94% 12.5%
2.5 5 6.06 10 15 Fertilization R C-% 0 2.5 5	Lab Control ate Detail Control Type	5 5 5 5 5 5 5 7 8 8 9 1 0.85 0.78 0.85	0.864 0.862 0.856 0.804 0.756 0.736 Rep 2 0.88 0.83 0.82	0.8139 0.7915 0.8044 0.7524 0.6899 0.6748 Rep 3 0.89 0.9	0.9141 0.9325 0.9076 0.8556 0.8221 0.7972 Rep 4 0.8 0.88 0.92	0.8 0.78 0.82 0.74 0.68 0.66 Rep 5 0.9 0.92 0.82	0.9 0.92 0.92 0.85 0.83	0.01806 0.02538 0.0186 0.0186 0.02379	0.04037 0.05675 0.04159 0.04159 0.0532	4.67% 6.58% 4.86% 5.17% 7.04%	0.0% 0.23% 0.93% 6.94% 12.5%

Report Date:

29 Aug-17 16:02 (p 1 of 2)

Test Code: 1708-S210 | 19-4640-9870

							1631	Code:		00 02 10 1	9-4640-9870
Echinoid Sp	perm Cell Fertiliz	ation Test	15C						Nautilu	s Environ	mental (CA)
Analysis ID:	17-4041-4112	Er	dpoint: Fer	tilization Ra	te		CET	IS Version	: CETISv	1.8.7	
Analyzed:	29 Aug-17 16:	:01 A n	alysis: Par	ametric-Cor	ntrol vs Trea	tments	Offic	ial Result	s: Yes		
Data Transfe	orm	Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU
Angular (Cor	rected)	NA	C > T	NA	NA		7.84%	6.06	10	7.785	16.5
Dunnett Mu	Itiple Compariso	n Test									
Control	vs C-%		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision	n(α:5%)		
Lab Control	2.5	The state of the s	0.002724	2.362	0.093 8	0.8325	CDF		nificant Effec	t	
	5		0.2768	2.362	0.093 8	0.7389	CDF	J	ificant Effec		
	6.06		2.075	2.362	0.093 8	0.0867	CDF	_	nificant Effec		
	10*		3.536	2.362	0.093 8	0.0036	CDF	Significa		•	
	15*		4.133	2.362	0.093 8	0.0008	CDF	Significa			
ANOVA Tab	le,										
Source	Sum Sqւ	uares	Mean Squ	ıare	DF	F Stat	P-Value	Decision	ι(α:5%)		
Between	0.134548		0.0269096	31	5	6.889	0.0004	Significa	nt Effect		
Error	0.093746	95	0.0039061	23	24			J			
Total	0.228295				29						
Distribution	al Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision(α:1%)			
Variances	Bartlett E	Equality of \	/ariance	0.9858	15.09	0.9637	Equal Var			947,475-4	
Distribution		Wilk W Nor		0.9704	0.9031	0.5493	Normal Di				
Fertilization	Rate Summary										
C-%											
	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	Count 5	Mean 0.864	95% LCL 0.8139	95% UCL 0.9141	Median 0.88	Min 0.8		Std Err 0.01806		Water Comment
0 2.5								Max 0.9 0.92		CV% 4.67% 6.58%	%Effect 0.0% 0.23%
_		5	0.864	0.8139	0.9141	0.88	0.8	0.9	0.01806	4.67% 6.58%	0.0% 0.23%
2.5		5 5	0.864 0.862	0.8139 0.7915	0.9141 0.9325	0.88 0.88	0.8 0.78	0.9 0.92	0.01806 0.02538	4.67%	0.0% 0.23% 0.93%
2.5 5		5 5 5	0.864 0.862 0.856	0.8139 0.7915 0.8044	0.9141 0.9325 0.9076	0.88 0.88 0.85	0.8 0.78 0.82	0.9 0.92 0.92	0.01806 0.02538 0.0186	4.67% 6.58% 4.86% 5.17%	0.0% 0.23% 0.93% 6.94%
2.5 5 6.06		5 5 5 5	0.864 0.862 0.856 0.804	0.8139 0.7915 0.8044 0.7524	0.9141 0.9325 0.9076 0.8556	0.88 0.88 0.85 0.8	0.8 0.78 0.82 0.74	0.9 0.92 0.92 0.85	0.01806 0.02538 0.0186 0.0186	4.67% 6.58% 4.86%	0.0% 0.23% 0.93%
2.5 5 6.06 10 15		5 5 5 5 5 5	0.864 0.862 0.856 0.804 0.756 0.736	0.8139 0.7915 0.8044 0.7524 0.6899	0.9141 0.9325 0.9076 0.8556 0.8221	0.88 0.85 0.8 0.76	0.8 0.78 0.82 0.74 0.68	0.9 0.92 0.92 0.85 0.83	0.01806 0.02538 0.0186 0.0186 0.02379	4.67% 6.58% 4.86% 5.17% 7.04%	0.0% 0.23% 0.93% 6.94% 12.5%
2.5 5 6.06 10 15	Lab Control	5 5 5 5 5 5	0.864 0.862 0.856 0.804 0.756 0.736	0.8139 0.7915 0.8044 0.7524 0.6899	0.9141 0.9325 0.9076 0.8556 0.8221	0.88 0.85 0.8 0.76	0.8 0.78 0.82 0.74 0.68	0.9 0.92 0.92 0.85 0.83	0.01806 0.02538 0.0186 0.0186 0.02379	4.67% 6.58% 4.86% 5.17% 7.04%	0.0% 0.23% 0.93% 6.94% 12.5%
2.5 5 6.06 10 15 Angular (Co i	Lab Control	5 5 5 5 5 5 5	0.864 0.862 0.856 0.804 0.756 0.736	0.8139 0.7915 0.8044 0.7524 0.6899 0.6748	0.9141 0.9325 0.9076 0.8556 0.8221 0.7972	0.88 0.88 0.85 0.8 0.76 0.75	0.8 0.78 0.82 0.74 0.68 0.66	0.9 0.92 0.92 0.85 0.83 0.79	0.01806 0.02538 0.0186 0.0186 0.02379 0.02205	4.67% 6.58% 4.86% 5.17% 7.04% 6.7%	0.0% 0.23% 0.93% 6.94% 12.5% 14.81%
2.5 5 6.06 10 15 Angular (Coo C- % 0 2.5	Lab Control rrected) Transfor Control Type	5 5 5 5 5 5 7med Sumr	0.864 0.862 0.856 0.804 0.756 0.736 mary	0.8139 0.7915 0.8044 0.7524 0.6899 0.6748	0.9141 0.9325 0.9076 0.8556 0.8221 0.7972	0.88 0.85 0.8 0.76 0.75	0.8 0.78 0.82 0.74 0.68 0.66	0.9 0.92 0.92 0.85 0.83 0.79	0.01806 0.02538 0.0186 0.0186 0.02379 0.02205	4.67% 6.58% 4.86% 5.17% 7.04% 6.7%	0.0% 0.23% 0.93% 6.94% 12.5% 14.81%
2.5 5 6.06 10 15 Angular (Cor C- %	Lab Control rrected) Transfor Control Type	5 5 5 5 5 5 7med Summ Count	0.864 0.862 0.856 0.804 0.756 0.736 mary Mean 1.196	0.8139 0.7915 0.8044 0.7524 0.6899 0.6748 95% LCL 1.125	0.9141 0.9325 0.9076 0.8556 0.8221 0.7972 95% UCL 1.267	0.88 0.88 0.85 0.8 0.76 0.75 Median	0.8 0.78 0.82 0.74 0.68 0.66 Min 1.107	0.9 0.92 0.92 0.85 0.83 0.79	0.01806 0.02538 0.0186 0.0186 0.02379 0.02205 Std Err 0.02552	4.67% 6.58% 4.86% 5.17% 7.04% 6.7% CV%	0.0% 0.23% 0.93% 6.94% 12.5% 14.81% %Effect 0.0%
2.5 5 6.06 10 15 Angular (Coo C- % 0 2.5	Lab Control rrected) Transfor Control Type	5 5 5 5 5 5 7med Summ Count 5	0.864 0.862 0.856 0.804 0.756 0.736 mary Mean 1.196 1.196	0.8139 0.7915 0.8044 0.7524 0.6899 0.6748 95% LCL 1.125 1.095	0.9141 0.9325 0.9076 0.8556 0.8221 0.7972 95% UCL 1.267 1.297	0.88 0.88 0.85 0.8 0.76 0.75 Median 1.217 1.217	0.8 0.78 0.82 0.74 0.68 0.66 Min 1.107 1.083	0.9 0.92 0.92 0.85 0.83 0.79 Max 1.249 1.284	0.01806 0.02538 0.0186 0.0186 0.02379 0.02205 Std Err 0.02552 0.03632	4.67% 6.58% 4.86% 5.17% 7.04% 6.7% CV% 4.77% 6.79%	0.0% 0.23% 0.93% 6.94% 12.5% 14.81% %Effect 0.0% 0.01%
2.5 5 6.06 10 15 Angular (Cor C- % 0 2.5 5	Lab Control rrected) Transfor Control Type	5 5 5 5 5 5 5 Count 5 5	0.864 0.862 0.856 0.804 0.756 0.736 mary Mean 1.196 1.196 1.185	0.8139 0.7915 0.8044 0.7524 0.6899 0.6748 95% LCL 1.125 1.095 1.107	0.9141 0.9325 0.9076 0.8556 0.8221 0.7972 95% UCL 1.267 1.297 1.263	0.88 0.88 0.85 0.8 0.76 0.75 Median 1.217 1.217 1.173	0.8 0.78 0.82 0.74 0.68 0.66 Min 1.107 1.083 1.133	0.9 0.92 0.92 0.85 0.83 0.79 Max 1.249 1.284 1.284	0.01806 0.02538 0.0186 0.0186 0.02379 0.02205 Std Err 0.02552 0.03632 0.02803	4.67% 6.58% 4.86% 5.17% 7.04% 6.7% CV% 4.77% 6.79% 5.29%	0.0% 0.23% 0.93% 6.94% 12.5% 14.81% %Effect 0.0% 0.01% 0.92%

Analyst: _____ QA: <u>A(9|7|</u>|17

Report Date: Test Code: 29 Aug-17 16:02 (p 2 of 2) 1708-S210 | 19-4640-9870

Echinoid Sperm Cell Fertilization Test 15C Nautilus Environmental (CA) Analysis ID: 17-4041-4112 Endpoint: Fertilization Rate **CETIS Version:** CETISv1.8.7 Analyzed: 29 Aug-17 16:01 Analysis: Parametric-Control vs Treatments Official Results: Yes Graphics 1.0 0.10 0.9 0.06 Fertilization Rate 0.04 0.7 0.02 0.6 0.00 0.5 -0.02 -0.04 0.3 -0.06 0.2 -0.08 0.1 0.0 -0.12 0 LC 2.5 10 15 -2.0 -1.5 -2.5 -1.0 -0.5 0.0 1.0 C-% Rankits

Echinoid Sperm Cell Fertilization Test 15C

Report Date:

29 Aug-17 16:02 (p 1 of 1)

Test Code:

1708-S210 | 19-4640-9870

Nautilus Environmental (CA)

Analysis ID: 10-4607-4537 **Analyzed:** 29 Aug-17 16:02

Endpoint: Fertilization Rate

Analysis: Linear Interpolation (ICPIN)

CETIS Version: CETISv1.8.7

Tadtida Elivirolillelitai (

Official Results: Yes

Linear Interpol	ation Options				
X Transform	Y Transform	Seed	Resamples	Exp 95% CL	Method
Linear	Linear	871270	1000	Yes	Two-Point Interpolation

Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL
EC25	>15	N/A	N/A	<6.667	NA	NA
EC50	>15	N/A	N/A	<6.667	NA	NA

Fertilizat	tion Rate Summary	Calculated Variate(A/B)									
C-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Lab Control	5	0.864	0.8	0.9	0.01806	0.04037	4.67%	0.0%	432	500
2.5		5	0.862	0.78	0.92	0.02538	0.05675	6.58%	0.23%	431	500
5		5	0.856	0.82	0.92	0.0186	0.04159	4.86%	0.93%	428	500
6.06		5	0.804	0.74	0.85	0.0186	0.04159	5.17%	6.94%	402	500
10		5	0.756	0.68	0.83	0.02379	0.0532	7.04%	12.5%	378	500
15		5	0.736	0.66	0.79	0.02205	0.0493	6.7%	14.81%	368	500

151

Report Date: Test Code: 29 Aug-17 16:03 (p 1 of 1) 1708-S210 | 19-4640-9870

				101				Code:			9-4640-9870
Echinoid Sp	erm Cell Fertiliz	ation Test	15C						Nautilu	s Environ	mental (CA)
Analysis ID: Analyzed:	12-9750-1543 29 Aug-17 16		ndpoint: Fe			T		IS Version:	CETISv1	.8.7	
				ametric Bio		- i wo Samp		ial Results	: Yes		
Data Transfo		Zeta	Alt Hyp	Trials	Seed	TST b	PMSD	NOEL	LOEL	TOEL	TU
Angular (Cor	rected)	NA	C*b < T	NA 	NA —————	0.75	4.75%	15	>15	NA	6.667
TST-Welch's	t Test										
Control	vs C-%		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision(α:5%)		
Lab Control	2.5*		7.279	1.943	0.08 6	0.0002	CDF	Non-Signi	ficant Effect	<u> </u>	***
	5*		8.485	1.895	0.064 7	< 0.0001	CDF		ficant Effect		
	6.06*		7.22	1.895	0.057 7	<0.0001	CDF	Ū	ficant Effect		
	10*		4.698	1.895	0.064 7	0.0011	CDF	•	ficant Effect		
	15*		4.333	1.895	0.059 7	0.0017	CDF	_	ficant Effect		
ANOVA Tabl	е										
Source	Sum Sqւ	ıares	Mean Squ	iare	DF	F Stat	P-Value	Decision(α:5%)		
Between	0.134548		0.0269096	51	5	6.889	0.0004	Significant			
Error	0.093746	95	0.0039061	23	24			Ū			
Total	0.228295				29	_					
Distributiona	al Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision(α:1%)			
Variances	Bartlett E	Equality of \	/ariance	0.9858	15.09	0.9637	Equal Var	iances	W. W. C.		
Distribution	Shapiro-	Wilk W Noi	mality	0.9704	0.9031	0.5493	Normal Di				
Fertilization	Rate Summany		**************************************								
	reace outilinary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	-	Count 5	Mean 0.864	95% LCL 0.8139	95% UCL 0.9141	Median 0.88		Max 0.9	Std Err 0.01806		
0 2.5	Control Type						Min 0.8 0.78	ALLEN DESCRIPTIONS OF THE	Contract of the Contract of th	CV% 4.67% 6.58%	%Effect 0.0% 0.23%
0	Control Type	5	0.864	0.8139	0.9141	0.88	0.8	0.9	0.01806	4.67% 6.58%	0.0% 0.23%
0 2.5	Control Type	5 5	0.864 0.862	0.8139 0.7915	0.9141 0.9325	0.88 0.88	0.8 0.78	0.9 0.92 0.92	0.01806 0.02538 0.0186	4.67% 6.58% 4.86%	0.0% 0.23% 0.93%
0 2.5 5	Control Type	5 5 5 5	0.864 0.862 0.856	0.8139 0.7915 0.8044	0.9141 0.9325 0.9076	0.88 0.88 0.85	0.8 0.78 0.82	0.9 0.92	0.01806 0.02538	4.67% 6.58% 4.86% 5.17%	0.0% 0.23% 0.93% 6.94%
0 2.5 5 6.06	Control Type	5 5 5 5	0.864 0.862 0.856 0.804	0.8139 0.7915 0.8044 0.7524	0.9141 0.9325 0.9076 0.8556	0.88 0.88 0.85 0.8	0.8 0.78 0.82 0.74	0.9 0.92 0.92 0.85	0.01806 0.02538 0.0186 0.0186	4.67% 6.58% 4.86%	0.0% 0.23% 0.93%
0 2.5 5 6.06 10 15	Control Type	5 5 5 5 5 5	0.864 0.862 0.856 0.804 0.756 0.736	0.8139 0.7915 0.8044 0.7524 0.6899	0.9141 0.9325 0.9076 0.8556 0.8221	0.88 0.88 0.85 0.8 0.76	0.8 0.78 0.82 0.74 0.68	0.9 0.92 0.92 0.85 0.83	0.01806 0.02538 0.0186 0.0186 0.02379	4.67% 6.58% 4.86% 5.17% 7.04%	0.0% 0.23% 0.93% 6.94% 12.5%
0 2.5 5 6.06 10 15 Angular (Cor	Control Type Lab Control	5 5 5 5 5 5	0.864 0.862 0.856 0.804 0.756 0.736	0.8139 0.7915 0.8044 0.7524 0.6899	0.9141 0.9325 0.9076 0.8556 0.8221	0.88 0.88 0.85 0.8 0.76	0.8 0.78 0.82 0.74 0.68	0.9 0.92 0.92 0.85 0.83	0.01806 0.02538 0.0186 0.0186 0.02379	4.67% 6.58% 4.86% 5.17% 7.04%	0.0% 0.23% 0.93% 6.94% 12.5%
0 2.5 5 6.06 10 15 Angular (Cor	Control Type Lab Control rected) Transfor	5 5 5 5 5 5 5	0.864 0.862 0.856 0.804 0.756 0.736	0.8139 0.7915 0.8044 0.7524 0.6899 0.6748	0.9141 0.9325 0.9076 0.8556 0.8221 0.7972	0.88 0.88 0.85 0.8 0.76 0.75	0.8 0.78 0.82 0.74 0.68 0.66	0.9 0.92 0.92 0.85 0.83 0.79	0.01806 0.02538 0.0186 0.0186 0.02379 0.02205	4.67% 6.58% 4.86% 5.17% 7.04% 6.7%	0.0% 0.23% 0.93% 6.94% 12.5% 14.81%
0 2.5 5 6.06 10 15 Angular (Cor C- %	Control Type Lab Control rected) Transfor Control Type	5 5 5 5 5 5 med Sumr	0.864 0.862 0.856 0.804 0.756 0.736 mary	0.8139 0.7915 0.8044 0.7524 0.6899 0.6748	0.9141 0.9325 0.9076 0.8556 0.8221 0.7972	0.88 0.85 0.8 0.76 0.75	0.8 0.78 0.82 0.74 0.68 0.66	0.9 0.92 0.92 0.85 0.83 0.79	0.01806 0.02538 0.0186 0.0186 0.02379 0.02205 Std Err 0.02552	4.67% 6.58% 4.86% 5.17% 7.04% 6.7% CV% 4.77%	0.0% 0.23% 0.93% 6.94% 12.5% 14.81%
0 2.5 5 6.06 10 15 Angular (Cor C- %	Control Type Lab Control rected) Transfor Control Type	5 5 5 5 5 5 med Sumr Count	0.864 0.862 0.856 0.804 0.756 0.736 mary Mean 1.196	0.8139 0.7915 0.8044 0.7524 0.6899 0.6748 95% LCL 1.125	0.9141 0.9325 0.9076 0.8556 0.8221 0.7972 95% UCL 1.267	0.88 0.88 0.85 0.8 0.76 0.75 Median	0.8 0.78 0.82 0.74 0.68 0.66 Min 1.107 1.083	0.9 0.92 0.92 0.85 0.83 0.79 Max 1.249 1.284	0.01806 0.02538 0.0186 0.0186 0.02379 0.02205 Std Err 0.02552 0.03632	4.67% 6.58% 4.86% 5.17% 7.04% 6.7% CV% 4.77% 6.79%	0.0% 0.23% 0.93% 6.94% 12.5% 14.81% %Effect 0.0% 0.01%
0 2.5 5 6.06 10 15 Angular (Cor C -% 0 2.5	Control Type Lab Control rected) Transfor Control Type	5 5 5 5 5 5 med Sumr Count 5	0.864 0.862 0.856 0.804 0.756 0.736 mary Mean 1.196 1.196	0.8139 0.7915 0.8044 0.7524 0.6899 0.6748 95% LCL 1.125 1.095	0.9141 0.9325 0.9076 0.8556 0.8221 0.7972 95% UCL 1.267 1.297	0.88 0.85 0.8 0.76 0.75 Median 1.217 1.217 1.173	0.8 0.78 0.82 0.74 0.68 0.66 Min 1.107 1.083 1.133	0.9 0.92 0.92 0.85 0.83 0.79 Max 1.249 1.284 1.284	0.01806 0.02538 0.0186 0.0186 0.02379 0.02205 Std Err 0.02552 0.03632 0.02803	4.67% 6.58% 4.86% 5.17% 7.04% 6.7% CV% 4.77% 6.79% 5.29%	0.0% 0.23% 0.93% 6.94% 12.5% 14.81% %Effect 0.0% 0.01% 0.92%
0 2.5 5 6.06 10 15 Angular (Cor C- % 0 2.5 5	Control Type Lab Control rected) Transfor Control Type	5 5 5 5 5 5 med Sumr Count 5 5	0.864 0.862 0.856 0.804 0.756 0.736 mary Mean 1.196 1.196 1.185	0.8139 0.7915 0.8044 0.7524 0.6899 0.6748 95% LCL 1.125 1.095 1.107	0.9141 0.9325 0.9076 0.8556 0.8221 0.7972 95% UCL 1.267 1.297 1.263	0.88 0.88 0.85 0.8 0.76 0.75 Median 1.217 1.217	0.8 0.78 0.82 0.74 0.68 0.66 Min 1.107 1.083	0.9 0.92 0.92 0.85 0.83 0.79 Max 1.249 1.284	0.01806 0.02538 0.0186 0.0186 0.02379 0.02205 Std Err 0.02552 0.03632	4.67% 6.58% 4.86% 5.17% 7.04% 6.7% CV% 4.77% 6.79%	0.0% 0.23% 0.93% 6.94% 12.5% 14.81% %Effect 0.0% 0.01%

CETIS Test Data Worksheet

LOD

Report Date:

25 Aug-17 08:59 (p 1 of 1)

Test Code: 1708-52) (19-4640-9870/7403DB8E

Echinoid Sperm Cell Fertilization Test 15C Nautilus Environmental (CA) Start Date: 25 Aug-17 Species: Strongylocentrotus purpuratus Sample Code: 17-0943 End Date: 25 Aug-17 **Protocol**: EPA/600/R-95/136 (1995) Sample Source: IDE Americas, Inc. 8/25 sample Sample Date: 25 Aug-17 Material: Facility Effluent Sample Station: M-001 (Daily) C-% Code Rep Pos # Counted # Fertilized Notes 8/29/17 \$0 TND OU \$0 \$3 78 75

CETIS Test Data Worksheet

Report Date:

25 Aug-17 08:59 (p 1 of 1)

Test Code: \708-521019-4640-9870/7403DB8E

Echinoid Sperm Cell Fertilization Test 15C

Nautilus Environmental (CA)

Start Date:	25 Aug-17	Species:	Strongylocentrotus purpuratus	Sample Code:	17-0943
End Date:	25 Aug-17	Protocol:	EPA/600/R-95/136 (1995)	•	IDE Americas, Inc.
Sample Date:	25 Aug-17	Material:	Facility Effluent	Sample Station:	•

LC LC LC	Rep 1 2 3 4 5 1	90 83 79 72	# Counted	#Fertilized	Notes RL 8/15/17
LC LC	2 3 4 5	90 83 79	100	8-1	Kr 8/12/11)
LC	3 4 5	83 79			
LC	4 5	79			
	5			1	
		12			
	'	81	100	C) A	
	2	73	100	90	RL 8/15/17
- 1					
			k		
			(00	\$5	PL 8/25/17
			100	83	K817210
	5				
	1	63	100	91	PL 8/25/17
	2	87	100	80	PL 8/25/17
	3	69			•
	4	89			
	5	68			
	1	74	100	75	RL 8/25/17
	2	75			0.1
	3				
	4	64	100	73	PL 8/15/17
	5	61			VI - 1 /
		3 4 5 1 2 3 4 5 1 2 3 4 4 5 1 2 3 4 4 5 1 2 3 4 4 5 1 2 2 3 4 4 5 1 1 2 2 3 3 4 4 5 1 1 2 2 3 3 4 4 5 1 1 2 2 3 3 4 4 5 1 1 2 2 3 3 4 4 5 1 1 2 2 3 3 4 4 5 1 1 2 2 3 3 4 4 5 1 1 2 2 3 3 4 4 5 1 1 2 2 3 3 4 4 5 1 1 2 2 3 3 4 4 5 1 1 2 2 3 3 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 62 4 71 5 77 1 76 2 66 3 86 4 65 5 84 1 67 2 80 3 78 4 70 5 88 1 63 2 87 3 69 4 89 5 68 1 74 2 75 3 85 4 64	3 62 4 71 5 77 1 76 00 2 66 3 86 4 65 5 84 1 67 100 2 80 3 78 4 70 5 88 1 63 100 2 87 100 3 69 4 89 5 68 1 74 100 2 75 3 85 4 64 00	3 62 4 71 5 77 1 76 1 0 0 \$5 77 1 76 1 76 1 0 0 \$5 77 1 76 1 76 1 0 0 \$5 77 1 76 1 76 1 1 1 1 1 1 1 1 1 1 1 1 1

QC: EG

Marine Chronic Bioassay

Water Quality Measurements

Client:

IDE

Test Species: S. purpuratus

Sample ID:

M-001 (Daily) 8/25 Sample

Start Date/Time: 8/25/2017 1448

Sample Log No.: 17- 0943

End Date/Time: 8/25/2017 \528

Test No: __1708-5210

			Analyst:	CG
		Initial R	leadings	
Concentration	DO	рН	Salinity	Temperature
%	(mg/L)	(units)	(ppt)	(°C)
Lab Control	4.D	8.12	33.52	15.4
2.5	g.0	8.12	33.7	15-5
5.0	7.9	8.12	33 F	15.1
6.06	7.9	8.12	33.7	15.3
10	8.0	8.12	33.7	15.1
15	8.0	4.12	33.7	14.9

0	am	m	ant	٠.

((A)	6000	chis	17
١.	1,71	171111	- 56 I UU	, 51

QC Check:

AC 8/29/17

Final Review: WR 917117

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

Marine Chronic Bioassay

Echinoderm Sperm-Cell Fertilization Worksheet

Client:	1175
Sample ID:	Start Date/Time: 8/25/2017 / 1448 dy M-001 8/25 Samolo End Date/Time: 8/25/2017 / 1448
Test No.:	21d Date/1111e. 0/25/2017 7 19 28
	Species: S. purpuratus Animal Source: Pt. Loma
Tech initials:	Date Collected: qn_1
Injection Time:	1410
Sperm Absorbance at	400 nm:(target range of 0.8 - 1.0 for density of 4x10 ⁶ sperm/ml)
Eggs Counted:	
Lggs Counted.	$\frac{77}{96}$ Mean: $\frac{87.4}{87.4} \times 50 = \frac{4370}{96} \text{ eggs/ml}$
	্রি (target counts of 80 eggs per vertical pass on Sedgwick-
	Rafter slide for a final density of 4000 eggs/ml)
	<u>+8</u>
1	$\frac{97}{6}$
loitiol dånait	43.70 eggs/ml = dilution factor
Initial density: Final density:	diadion lactor egg stock mi
r mar density.	4000 eggs/ml - 1.0 part egg stock seawater ml
Prepare the embryo sto	ock according to the calculated dilution factor. For example, if the dilution factor is 2.25, use 100 ml of
existing stock (1 part) a	and 125 ml of dilution water (1.25 parts).
Rangefinder Test:	Sperm:Egg Ratio
ml Sperm Stock	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
ml Seawater	50 40 30 20 10 5.0 2.5 1.25 0.0 10 20 30 40 45 47.5 48.75
	10.70
Coorne Added (400 D)	Time Rangefinder Ratio: Fert. Unfert.
Sperm Added (100 µl):	1421 50:1 83/1 17/9
Eggs Added (0.5 ml): Test Ended:	1431 100:) 96/17 4/3
rest Ended.	
NOTE: Choose a sperr	m-to-egg ratio that results in fertilization between 80 and 90 percent. If more than one concentration is within
tins range, choose the	tatio closest to 90 percent unless professional judgment dictates consideration of other factors (o.g.
organism health, stage	of reproductive season, site conditions).
Definitive Test	Sperm:Egg Ratio Used: 15
<u>Bennave rest</u>	Sperm:Egg Ratio Used:
	Time Fert. Unfert.
Sperm Added (100 µl):	1448 QC1 89 11
Eggs Added (0.5 ml):	1508 QC2 91 9
Test Ended:	1528 Egg Control 1 0 100
	Egg Control 2
Comments:	(B) NO VILLION Regulard
QC Check:	AC 8 129 17 Final Review: 449 97 17
Nautilus Environmental, 434	40 Vandever Avenue. San Diego, CA 92120.

Appendix B

Sample Receipt Information

Nautilus Environmental 4340 Vandever Avenue San Diego, CA 92120

Client:	IDE		
Sample ID:	Dack	M-501	
Test ID No(s).:	1708	-5210	

Sample (A, B, C):	LA			
Log-in No. (17-xxxx):	3942 0943	3		
Sample Collection Date & Time:	8/25/17 080			
Sample Receipt Date & Time:	8 25 17 1253			
Number of Containers & Container Type:	1-42 Cusi			
Approx. Total Volume Received (L):	~40			
Check-in Temperature (°C)	4.2			
Temperature OK? 1	(Y) N	Y N	Y N	Y N
DO (mg/L)	8.1			
pH (units)	8.04			
Conductivity (µS/cm)	-			
Salinity (ppt)	32.6			
811-11-14./11.\2				
Alkalinity (mg/L) ²	104			
Hardness (mg/L) ^{2, 3}	109			
-, -,	0.02			

Test Performed:	Welyn Fernlizat	Alkalinity: 125 Hardness or Salinity: 3400
	Additional Control? Y N	= Alkalinity: Hardness or Salinity:
Test Performed:		Control/Dilution Water: 8:2 / Lab SW / Lab ART Other:
	Additional Control? Y N	=Alkalinity: Hardness or Salinity:
Test Performed:		Control/Dilution Water: 8:2 / Lab SW / Lab ART Other:
	Additional Control? Y N	=Alkalinity: Hardness or Salinity:
Notes:		uld be 0-6°C, if received more than 24 hours past collection time.
	² mg/L as CaCO3, ³ Measure	ed for freshwater samples only, NA = Not Applicable
onal Comments:	@Q18AC 8/29	7/17

Sample Check-In Information

Sample Description:	C, 0009.	CSS. MO 1	E315
	700000		
COC Complete (Y/N)?	?		
A_Y_BC			
Filtration? Y (N)			
Pore Size:		_	
Organisms	or	Debris	
Salinity Adjustment?	Y (N)		
Test:	Source:	Targe	et ppt:
Test:	Source:	Targe	et ppt:
Test:	Source:	Targe	et ppt:
pH Adjustment? Y (N.		
	A	В	С
Initial pH:			
mount of HCI added:			
Final pH:			
Cl ₂ Adjustment? Y	N)		
	A	В	С
Initial Free Cl ₂ :			
STS added:			
Final Free Cl ₂ :			
Sample Aeration? Y	N		
,	A	В	С
Initial D.O.			
Duration & Rate			
Final D.O.			
Subsamples for Addit	tional Chen	nistry Require	ed? Y
	·		
Tech Initials A			
		100	ladie
	QC Ch	ook: TW X	12911

Appendix C

Chain-of-Custody Form

CDP laoratory:	Turn Around Time
Entahlpy Laboratory:	Normal:X
WECK Laboratory:	RUSH (24 hr):
Nautilus: X	3 Days:
AIM:	5 Days:
Ohlan	222 0

(2001). Caralle (1900) and 1940 are referred to the control of the control of the control of the control of the control	a specific consequent across a prompty agradiant specific consequence and across a specific consequence and across	#866.4 (P00040000) are a conference, area (\$0000) are afficient \$2.000								Other	·			??? Days	- 1
Project Name: NPDES Daily Tox		Project Manage				50) 201-77	777								
Special instruction: Sampled d intervals. Sample collected to									ANALYS	ES	ng vor a in . vor phy			NOTES:	
8/25/17 @ 8:00 VH	,		,			Purple Urchin Chronic Fertilization									
		Glass=G Plastic=	P			nic Fe									
The second secon	Yes=Y No=N A	Acid=A Base=B		Annother sign or a provide common of		Chror									
Drinkir	ng Water=DW Seawat	er=SW Soil=S Brine=	В	Pres		chin (Ŗ
Sample ID	Date	Time	Sample	Preservative	Container	rple Un									
			Туре		Туре	Pu			Hillian (1997)						
M-001 (17- 2722)	8/24-25/2017	8:00-8:00	SW	N	4L CUBIE	Х								TDS - 31.72 ppt, EC - 49.45 mS/cm	
															and the second
															And Sandanas Com
Relinquished By:		Date:	Time:		Received By:		J		Ti	ime:			Sam	ole Condition Upon Receipt:	
Wayn	<u> </u>	8/25/17	1200		9	S	25	Jin	12:19	B	x	Iced		Ambient or°C	
		8/25/19	12:53		Tarke Da	> 8	75/1	7	1253	3		Iced		Ambient or°C	

NANTICUS 10: 17-0943

Appendix D

Reference Toxicant Test Data and Statistical Analyses

CETIS Summary Report

Report Date:

29 Aug-17 15:39 (p 1 of 1)

Test Code:

170825sprt | 06-8816-1100

[Water Water William				-	rest code	•	170	0203pit 00	0-0010-1100
Echinoid Spe	erm Cell Fertiliz	ation Tes	t 15C					***		Nautilus	Environn	nental (CA)
Batch ID: Start Date: Ending Date: Duration:	11-4051-6467 Test Type: Fertilization 25 Aug-17 14:48 Protocol: EPA/600/R-95/136 (1995) 25 Aug-17 15:28 Species: Strongylocentrotus purpuratus 40m Source: Pt. Loma							Analyst: Diluent: Natural Seawater Brine: Not Applicable Age:				
Sample ID: Sample Date: Receive Date Sample Age:	: 25 Aug-17											
Comparison :	Summary											
Analysis ID 17-6926-1872	Endpoint Fertilization Ra	nte	NOEL <10	. LOEL	TOEL NA	PMSD 6.39%	TU	Meth		ultiple Com	parison Tes	st .
Point Estimat	te Summary											
Analysis ID	Endpoint		Level	μg/L	95% LCL	95% UCL	TU	Meth	nod			
09-0830-4014	Fertilization Ra	ite	EC50	43.11	40.93	45.41		Trim	med S	Spearman-K	ärber	
Test Acceptal	bility											
Analysis ID	Endpoint		Attrib	ute	Test Stat	TAC Limi	its	Ove	rlap	Decision		
09-0830-4014	Fertilization Ra	ite	Contro	ol Resp	0.89	0.7 - NL		Yes		Passes Ac	ceptability	Criteria
17-6926-1872	Fertilization Ra	ite	Contro	ol Resp	0.89	0.7 - NL		Yes			ceptability	
17-6926-1872	Fertilization Ra	ite	PMSD)	0.06386	NL - 0.25		No			ceptability	
Fertilization R	Rate Summary					,			The same of the same			
C-μg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std I	Err	Std Dev	CV%	%Effect
0	Lab Control	5	0.89	0.8273	0.9527	0.83	0.93	0.022	258	0.0505	5.67%	0.0%
10		5	0.798	0.7344	0.8616	0.75	0.88	0.022	289	0.05119	6.41%	10.34%
20		5	0.73	0.6879	0.7721	0.69	0.77	0.01	517	0.03391	4.65%	17.98%
40		5	0.58	0.5081	0.6519	0.54	0.68	0.02	588	0.05788	9.98%	34.83%
80		5	0.108	0.05726	0.1587	80.0	0.18	0.018	328	0.04087	37.84%	87.87%
160		5	0.006	0	0.01711	0	0.02	0.004	4	0.008944	149.1%	99.33%
Fertilization R	tate Detail											
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5						
0	Lab Control	0.83	0.92	0.93	0.84	0.93						
10		0.8	0.88	0.8	0.76	0.75						
20		0.77	0.69	0.72	0.71	0.76						
40		0.57	0.54	0.57	0.68	0.54						
		0.40	0.4	0.00	0.00							
80		0.18	0.1	0.09	0.08	0.09						

Report Date:

29 Aug-17 15:39 (p 1 of 2)

Test Code:

170825sprt | 06-8816-1100

							iest	Code:	170	เซ∠อspπ ∪เ	6-8816-1100
Echinoid Sp	perm Cell Fertiliz	ation Test	15C						Nautilu	s Environn	nental (CA)
Analysis ID:	17-6926-1872	En	dpoint: Fer	tilization Ra	te		CFT	IS Version	: CETISv	187	
Analyzed:	29 Aug-17 15:		-	rametric-Cor		tments		ial Results			
Data Transf	orm	Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU
Angular (Cor	rected)	NA	C > T	NA	NA		6.39%	<10	10	NA	
Dunnett Mu	Itiple Compariso	n Test									
Control	vs C-µg/L		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision	ι(α:5%)		
Lab Control	10*		3.491	2.362	0.089 8	0.0041	CDF	Significa	·		
	20*		5.679	2.362	0.089 8	<0.0001	CDF	Significa			
	40*		9.89	2.362	0.089 8	<0.0001	CDF	Significa			
	80*		24.09	2.362	0.089 8	<0.0001	CDF	Significa			
	160*		30.8	2.362	0.089 8	<0.0001	CDF	Significa			
ANOVA Tab	le										
Source	Sum Squ	ares	Mean Squ	uare	DF	F Stat	P-Value	Decision	ı(α:5%)		
Between	5.394424		1.078885		5	303.9	<0.0001	Significar			
Error	0.085216	82	0.0035507	' 01	24			J			
Total	5.479641				29	_					
Distribution	al Tests		ECONOMIC								
Attribute	Test			Test Stat	Critical	P-Value	Decision((a:1%)			
Variances	Bartlett B	quality of V	ariance	2.684	15.09	0.7486	Equal Var		tu(o		
Distribution	Shapiro-	Wilk W Nor	mality	0.9351	0.9031	0.0671	Normal Di				
Fertilization	Rate Summary										
C-μg/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	0.89	0.8273	0.9527	0.92	0.83	0.93	0.02258	5.67%	0.0%
10		5	0.798	0.7344	0.8616	0.8	0.75	0.88	0.02289	6.41%	10.34%
20		_									
40		5	0.73	0.6879	0.7721	0.72	0.69	0.77	0.01517	4.65%	17.98%
40		5 5	0.73 0.58	0.6879 0.5081	0.7721 0.6519	0.72 0.57	0.69 0.54	0.77 0.68	0.01517 0.02588	4.65% 9.98%	17.98% 34.83%
80											34.83%
		5	0.58	0.5081	0.6519	0.57	0.54	0.68	0.02588	9.98%	
80 160	rrected) Transfor	5 5 5	0.58 0.108 0.006	0.5081 0.05726	0.6519 0.1587	0.57 0.09	0.54 0.08	0.68 0.18	0.02588 0.01828	9.98% 37.84%	34.83% 87.87%
80 160	rrected) Transfor Control Type	5 5 5	0.58 0.108 0.006	0.5081 0.05726	0.6519 0.1587	0.57 0.09	0.54 0.08	0.68 0.18	0.02588 0.01828	9.98% 37.84%	34.83% 87.87%
80 160 Angular (Co	•	5 5 5 med Sumn	0.58 0.108 0.006	0.5081 0.05726 0	0.6519 0.1587 0.01711	0.57 0.09 0	0.54 0.08 0	0.68 0.18 0.02	0.02588 0.01828 0.004	9.98% 37.84% 149.1%	34.83% 87.87% 99.33%
80 160 Angular (Co C-μg/L	Control Type	5 5 5 med Sumn Count	0.58 0.108 0.006 nary Mean	0.5081 0.05726 0 95% LCL	0.6519 0.1587 0.01711 95% UCL	0.57 0.09 0 Median	0.54 0.08 0	0.68 0.18 0.02 Max	0.02588 0.01828 0.004 Std Err	9.98% 37.84% 149.1% CV%	34.83% 87.87% 99.33% %Effect
80 160 Angular (Con C-μg/L	Control Type	5 5 5 med Sumn Count 5	0.58 0.108 0.006 mary Mean 1.239	0.5081 0.05726 0 95% LCL 1.14	0.6519 0.1587 0.01711 95% UCL 1.338	0.57 0.09 0 Median 1.284	0.54 0.08 0 Min 1.146	0.68 0.18 0.02 Max 1.303	0.02588 0.01828 0.004 Std Err 0.03555	9.98% 37.84% 149.1% CV% 6.42%	34.83% 87.87% 99.33% %Effect 0.0%
80 160 Angular (Con C-μg/L 0 10	Control Type	5 5 5 med Sumn Count 5 5	0.58 0.108 0.006 mary Mean 1.239 1.107	0.5081 0.05726 0 95% LCL 1.14 1.024	0.6519 0.1587 0.01711 95% UCL 1.338 1.191	0.57 0.09 0 Median 1.284 1.107	0.54 0.08 0 Min 1.146 1.047	0.68 0.18 0.02 Max 1.303 1.217	0.02588 0.01828 0.004 Std Err 0.03555 0.03001	9.98% 37.84% 149.1% CV% 6.42% 6.06%	34.83% 87.87% 99.33% %Effect 0.0% 10.62%
80 160 Angular (Con C-μg/L 0 10 20	Control Type	5 5 5 med Sumn Count 5 5 5	0.58 0.108 0.006 nary Mean 1.239 1.107 1.025	0.5081 0.05726 0 95% LCL 1.14 1.024 0.9774	0.6519 0.1587 0.01711 95% UCL 1.338 1.191 1.073	0.57 0.09 0 Median 1.284 1.107 1.013	0.54 0.08 0 Min 1.146 1.047 0.9803	0.68 0.18 0.02 Max 1.303 1.217 1.071	0.02588 0.01828 0.004 Std Err 0.03555 0.03001 0.01716	9.98% 37.84% 149.1% CV% 6.42% 6.06% 3.74%	34.83% 87.87% 99.33% %Effect 0.0% 10.62% 17.27%

Analyst: QA: AC 8 130 17

Report Date: Test Code:

Rankits

29 Aug-17 15:39 (p 2 of 2) 170825sprt | 06-8816-1100

Echinoid Sperm Cell Fertilization Test 15C Nautilus Environmental (CA) Analysis ID: 17-6926-1872 Endpoint: Fertilization Rate **CETIS Version:** CETISv1.8.7 Analyzed: 29 Aug-17 15:38 Analysis: Parametric-Control vs Treatments Official Results: Yes Graphics 1.0 0.12 0.9 Reject Null 0.08 0.8 Fertilization Rate 0.06 0.7 0.04 0.6 0.02 0.5 0.00 -0.02 0.3 -0.04 0.2 -0.06 0.1 0.0 0 LC 10 20 80 160 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 1.0 C-µg/L

Report Date:

29 Aug-17 15:39 (p 1 of 1)

Test Code:

170825sprt | 06-8816-1100

Echinoid Sperm Cell Fertilization Test 15C

Nautilus Environmental (CA)

Analysis ID: 09-0830-4014 Analyzed:

Endpoint: Fertilization Rate 29 Aug-17 15:39

Analysis: Trimmed Spearman-Kärber **CETIS Version:** Official Results: Yes

CETISv1.8.7

Trimmed Spearman-Kärber Estimates

Threshold **Threshold Option** Trim Мu Sigma EC50 95% LCL 95% UCL Control Threshold 0.11 10.34% 1.635 0.01128 43.11 40.93 45.41

Fertilization	on Rate Summary										
C-µg/L	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Lab Control	5	0.89	0.83	0.93	0.02258	0.0505	5.67%	0.0%	445	500
10		5	0.798	0.75	0.88	0.02289	0.05119	6.41%	10.34%	399	500
20		5	0.73	0.69	0.77	0.01517	0.03391	4.65%	17.98%	365	500
40		5	0.58	0.54	0.68	0.02588	0.05788	9.98%	34.83%	290	500
80		5	0.108	0.08	0.18	0.01828	0.04087	37.84%	87.87%	54	500
160		5	0.006	0	0.02	0.004	0.008944	149.1%	99.33%	3	500

Report Date:

29 Aug-17 15:39 (1 of 1)

Echinoid Sperm Cell Fertilization Test 15C

Nautilus Environmental (CA)

Test Type: Fertilization

Protocol: EPA/600/R-95/136 (1995)

Organism: Strongylocentrotus purpuratus (Purpl

Endpoint: Fertilization Rate

Material:

Copper chloride

Source: Reference Toxicant-REF

Mean: 49.6 Count: 20 -2s Warning Limit: 8.924 -3s Action Limit: -11.42 Sigma: 20.34 CV: 41.00% +2s Warning Limit: 90.28 +3s Action Limit: 110.6

Quali	ty Con	trol Data	a								
Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2017	Jul	11	11:33	25.05	-24.55	-1.207	W. C.		09-0588-2471	00-1661-1655
2			13	15:20	37.5	-12.1	-0.595			05-9787-5418	02-0541-0147
3			19	16:28	50.59	0.9889	0.04862			03-3446-7266	15-7259-8466
4			20	18:10	31.52	-18.08	-0.8889			17-7484-2488	03-0485-5429
5			27	15:55	99.32	49.72	2.445	(+)		02-6715-3770	17-8186-2444
6			28	10:50	77.84	28.24	1.389			21-2559-1280	14-0688-6070
7		Aug	2	15:50	50.06	0.4551	0.02237			08-9742-2478	08-8646-9232
8			3	0:00	34.43	-15.17	-0.7456			02-7356-2235	20-3051-4002
9			5	19:25	23.07	-26.53	-1.304			11-5994-0488	10-6029-2098
10			7	15:10	59.94	10.34	0.5083			21-2468-7505	14-3489-7019
11			9	17:08	31.92	-17.68	-0.8695			13-6999-3036	11-7131-4234
12			10	16:51	41.14	-8.464	-0.4161			00-5471-5288	12-0643-2211
13			11	14:50	69.03	19.43	0.9552			04-5796-5476	07-8184-6783
14			14	14:40	64.51	14.91	0.7328			02-4510-8526	01-5460-0814
15			16	16:34	50.82	1.217	0.05983			16-3259-1018	06-7497-1035
16			18	14:09	42.53	-7.069	-0.3475			12-6613-4538	02-2322-5589
17			20	14:52	24.05	-25.55	-1.256			06-9655-0092	05-8785-3700
18			21	14:46	69.95	20.35	1			08-4756-2919	20-2992-4955
19			23	16:14	41.72	-7.883	-0.3875			02-7595-3678	15-3490-2746
20			24	16:11	67.1	17.5	0.8605			04-7651-5518	20-0883-0005
21			25	14:48	43.11	-6.49	-0.3191			06-8816-1100	09-0830-4014

CETIS Test Data Worksheet

Start Date:

Report Date:

25 Aug-17 08:58 (p 1 of 1) 06-8816-1100/170825sprt

Test Code:

Nautilus Environmental (CA)

Echinoid Sperm Cell Fertilization Test 15C

25 Aug-17

Species: Strongylocentrotus purpuratus Sample Code: 170825sprt

End Date:25 Aug-17Protocol:EPA/600/R-95/136 (1995)Sample Source:Reference ToxicantSample Date:25 Aug-17Material:Copper chlorideSample Station:Copper Chloride

`"	0 - 1	D	D: 1	# 0	u =	de Sample Station: Copper Chloride
C-μg/L	Code	кер		# Counted	# Fertilized	Notes
			1	100	80	8/781 ()
			2	100	Q	
			3	100	9	
			4	100	75	
			5	100	0	
			6	100	76	
			7	100	96	
			8	100	18	
			9	100	57	
			10	100	10	
			11	100	68	
			12	100	38 88 €\$	
			13	106	3	
			14	100	84	
			15	100	77	
			16	160	69 83	***************************************
			17	100	83	
			18	100	71 9 93	
			19	100	8	
			20	100	93	
			21	100	54 12	
			22	160		
			23	100	0	
			24	100	54	
			25	100	93	
			26	100	57	
			27	100	92	
			28	106	1	
			29	100	76	
			30	100	9	

Report Date: Test Code: 25 Aug-17 08:58 (p 1 of 1) 06-8816-1100/170825sprt

Echinoid Sperm Cell Fertilization Test 15C

Nautilus Environmental (CA)

Start Date:25 Aug-17Species:Strongylocentrotus purpuratusSample Code:170825sprtEnd Date:25 Aug-17Protocol:EPA/600/R-95/136 (1995)Sample Source:Reference ToxicantSample Date:25 Aug-17Material:Copper chlorideSample Station:Copper Chloride

					ar	
C-µg/L	Code	-		# Counted	# Fertilized	Notes
0	LC	1	17			
0	LC	2	27			
0	LC	3	20	100	88	EG 8 75 17
0	LC	4	14			
0	LC	5	25			
10		1	7	100	71	ÉG
10		2	12			
10		3	1		****	
10		4	29	V 3000		
10		5	4			
20		1	15	100	76	¥ή
20		2	16			
20		3	22			
20		4	18			
20		5	6			
40		1	9	100	58	EA
40		2	24			
40		3	26			
40		4	11			
40		5	21			
80		1	8	100	14	EG
80		2	10			
80		3	30			
80		4	19			
80		5	3			
160		1	23	100	0	KG
160		2	5		<u> </u>	
160		3	28			
160		4	2		WYO I A TO THE PARTY OF THE PAR	
160		5	13			

QC:EL

Marine Chronic Bioassay

Water Quality Measurements

1528

Client : Internal

Test Species: S. purpuratus

Sample ID:

CuCl₂

Start Date/Time: 8/25/2017 (낙성종

Test No:

170825sprt

End Date/Time: 8/25/2017

Dilutions made by:

EG

High conc. made (μg/L): Vol. Cu stock added (mL): 160 7-8

Final Volume (mL):

500

Cu stock concentration (μg/L):

Analyst:

		Initial R	eadings	/
Concentration	DO	рН	Salinity	Temperature
(μg/L)	(mg/L)	(units)	(ppt)	(°C)
Lab Control	8.1	8.08	33.4	15.4
10	7.8	8.05	33.6	15.3
20	7.8	8.07	33. V	15.2
40	7.8	8.07	33.5	15.5
80	7.7	8.06	33.5	15.6
160	7,7	8.06	33. 3.	15.4

Comments:		
		.A. A
QC Check:	AC8/29/17	Final Review: VFP 8 30 17

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

Marine Chronic Bioassay

Internal

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

Echinoderm Sperm-Cell Fertilization Worksheet

Client:	Internal			Start Date/Tim	ie: 8/25/2017	1 1448
Sample ID:	Cull 2			End Date/Tim		
Test No.:	1708255057			Specie	es: S. purpura	
	,			Animal Source	e: <u>Pt. Loma</u>	
Tech initials:	Eh			Date Collecte	ed: 8/20/1	7
Injection Time:					1	
Sperm Absorbance at 4	00 nm: 0.942	_ (target range of 0.8 -	1.0 for density of	f 4x10 ⁶ sperm/m	ıl)	
Eggs Counted:		n: <u>87 4</u> X 50 =	<u>4370</u>	eggs/ml		
	<u> </u>					
		t counts of 80 eggs per ve slide for a final density of		gwick-		
	78 Name	side for a final density of	4000 eggs/mi)			
	97				6	
					, (F)	
Initial density:	ЧЗ70 eggs/ml	= dilution fa	actor e	gg stock	ml	
Final density:	4000 eggs/ml	- 1.0 part egg		eawater	ml	
		parts sea	awater			
Prepare the embryo store	ck according to the calculand	ated dilution factor. For	example, if the o	dilution factor is	2.25, use 100	ml of
existing stock (1 part) ar	14 125 mi or dilution water	(1.25 parts).				
		Sn	erm:Egg Ratio			
Rangefinder Test:	2000:1 1600:			200:1	100:1	50:1
ml Sperm Stock	50 40	30 20		5.0	2.5	1.25
ml Seawater	0.0 10	20 30		45	47.5	48.75
	Timo	Dengafindas Datis	F4 11	. 6 . 4		
Sperm Added (100 µl):	Time	Rangefinder Ratio:	- T-	nfert.		
Eggs Added (0.5 ml):	1431		83/91	111		
Test Ended:	1441	100.1	<u>4011</u> T	11.3		
rest Lilded.		4-manage day				
this range, choose the	n-to-egg ratio that results i ratio closest to 90 perc of reproductive season, sit	ent unless professiona	0 and 90 percen I judgment dict	at. If more than ates considerat	one concentration of other	ation is within factors (e.g.,
, ,	,	,				
Definitive Test		Sperm:Egg Ratio Used	d: <u>75:1</u>			
	Time		Fert. U	nfert.		
Sperm Added (100 µl):	1448	QC1	89	11		
Eggs Added (0.5 ml):	1508	QC2	91	1		
Test Ended:	1528	Egg Control 1		100		
		Egg Control 2	\overline{C}	00		
Commonte	_ (A) No Ciltia	a Donne and				
Comments:	(R) 100 010 0	n required				
QC Check:	AC8/29/17			Final Reviev	N: 157 8/31	W7

Appendix E

Qualifier Codes

Glossary of Qualifier Codes:

- Q1 Temperatures out of recommended range; corrective action taken and recorded in Test Temperature Correction Log
- Q2 Temperatures out of recommended range; no action taken, test terminated same day
- Q3 Sample aerated prior to initiation or renewal due to dissolved oxygen (D.O.) levels below 6.0 mg/L
- Q4 Test aerated; D.O. levels dropped below 4.0 mg/L
- Q5 Test initiated with aeration due to an anticipated drop in D.O.
- Q6 Airline obstructed or fell out of replicate and replaced; drop in D.O. occurred
- Q7 Salinity out of recommended range
- Q8 Spilled test chamber/ Unable to recover test organism(s)
- Q9 Inadequate sample volume remaining, 50% renewal performed
- Q10 Inadequate sample volume remaining, no renewal performed
- Q11 Sample out of holding time; refer to QA section of report
- Q12 Replicate(s) not initiated; excluded from data analysis
- Q13 Survival counts not recorded due to poor visibility or heavy debris
- Q14 D.O. percent saturation was checked and was ≤ 110%
- Q15 Did not meet minimum test acceptability criteria. Refer to QA section of report.
- Q16 Percent minimum significant difference (PMSD) was <u>below</u> the lower bound limit for acceptability. This indicates that statistics may be over-sensitive in detecting a difference from the control due to low variability in the data set.
- Q17 Percent minimum significant difference (PMSD) was <u>above</u> the upper bound limit for acceptability. This indicates that statistics may be under-sensitive in detecting a difference from the control due to high variability in the data set.
- Q18 Incorrect Entry
- Q19 Illegible Entry
- Q20 Miscalculation
- Q21 Other (provide reason in comments section)
- Q22 Greater than 10% mortality observed upon receipt and/or in holding prior to test initiation.
 Organisms acclimated to test conditions at Nautilus and ultimately deemed fit to use for testing.
- Q23 Test or ganisms r eceived at a <u>temperature</u> greater than 3°C ou tside the r ecommended t est temperature range. However, due to age-specific protocol requirements and/or sample holding time constraints, the organisms were used to initiate tests upon the day of arrival. O rganisms were acclimated to the appropriate test conditions upon receipt and prior to test initiation.
- Q24 Test organisms received at <u>salinity</u> greater than 3 ppt outside of the recommended test salinity range. H owever, due t o age -specific pr otocol r equirements and/ or s ample ho lding t ime constraints, the organisms were used to initiate tests upon the day of arrival. Organisms were acclimated to the appropriate test conditions upon receipt and prior to test initiation.

Updated: 6/30/15