

Chronic Toxicity Test Results for the Carlsbad Desalination Plant

❖ Sample ID: M-001 (Daily) Sample Collection Date: August 11, 2017

Prepared for: IDE AMERICAS, Inc.

4590 Carlsbad Boulevard Carlsbad, CA 92008

Prepared by: Nautilus Environmental

Submitted: September 1, 2017

Data Quality Assurance:

- Nautilus Environmental is accredited in accordance with NELAP by the State of Oregon Environmental Laboratory Accreditation Program (Certificate No. 4053). It is also certified by the State of California Department of Health Services Environmental Laboratory Accreditation Program (Certificate No. 1802) and the State of Washington Department of Ecology (Lab ID C552).
- All data have been reviewed and verified.
- All test results have met minimum test acceptability criteria under their respective EPA protocols, unless otherwise noted in this report.
- o All test results have met internal Quality Assurance Program requirements.

California

4340 Vandever Avenue San Diego, California 92120 858.587.7333 fax: 858.587.3961

Results verified by: _____ Qdrienne libor____

Client: IDE Americas, Inc. Test ID: 1708-S112 Sample ID: M-001 Sample Date: August 11, 2017

INTRODUCTION

A discharge sample was collected in August 2017 for the Poseidon Resources (Channelside) LLC, Carlsbad Desalination Project (CDP) permit for daily chronic toxicity monitoring purposes. The discharge sample was collected from the CDP M-001 discharge monitoring point during a period of product water tank overflow operation. Chronic toxicity testing for the effluent sample was conducted during this time according to the permit that was adopted in 2006 (Order No. R9-2006-0065). Bioassay testing was conducted at the Nautilus Environmental (Nautilus) laboratory in San Diego, California on August 11, 2017 using the purple urchin (Strongylocentrotus purpuratus) chronic fertilization test.

MATERIALS AND METHODS

Sample collection and delivery were performed by IDE Americas, Inc. (IDE) personnel. Following arrival at Nautilus, an aliquot of the water sample was poured off and the following water quality parameters were measured: pH, dissolved oxygen (DO), temperature, salinity, alkalinity, and total chlorine. The sample was stored at 4° C in the dark until used for testing. A summary of the sample collection and receipt information is provided in Table 1, and water quality parameters measured upon receipt at Nautilus are presented in Table 2. Testing was conducted in accordance with the protocols described in USEPA 1995, and the methods are summarized in Table 3.

Table 1. Sample Information

Client/Project:	IDE Americas, Inc./Carlsbad Desalination Plan
Sample ID:	M-001 (product water tank overflow)
Monitoring Period:	August 2017
Sample Material:	Facility Effluent
Sampling Method:	Composite
Sample Collection Date, Time:	8/11/17, 06:30
Sample Receipt Date, Time:	8/11/17, 12:27

Table 2. Water Quality Measurements for the M-001 Sample upon Receipt

Sample Collection	рН	DO	Temp	Salinity	Alkalinity	Total Chlorine
Date		(mg/L)	(°C)	(ppt)	(mg/L as CaCO ₃)	(mg/L)
8/11/17	7.91	7.0	2.5	64.6	180	<0.02

Client: IDE Americas, Inc. Test ID: 1708-S112 Sample ID: M-001 Sample Date: August 11, 2017

Table 3. Echinoderm Fertilization Chronic Bioassay Specifications

Test Date, Times: 8/11/17, 14:50 through 15:30

Test Organism: Strongylocentrotus purpuratus (purple sea urchin) Test Organism Source: Field-collected off Point Loma in San Diego, CA

Lab Control/Dilution Water: Natural seawater (source: Scripps Institution of Oceanography inlet,

34±2 parts per thousand (ppt); 20-µm filtered

Test Concentrations: 2.5, 5.0, 6.06, 10, and 15 percent M-001 sample; lab control

Number of Replicates, Organisms

per Replicate:

5 replicates, 2000 eggs per replicate. Sperm to egg ratio determined

before each test with a preliminary rangefinding test.

Test Chamber Type, Volume per

Replicate:

Glass scintillation vial containing 10 mL of test solution

Protocol Used: EPA/600/R-95/136, 1995 West Coast Marine Chronic

Test Type: Fertilization; 20-min sperm exposure to effluent followed by a 20-

min fertilization period

Mean fertilization ≥70% in the control, and percent minimum Acceptability Criteria:

significant difference (PMSD) value <25.

Copper chloride Reference Toxicant Testing:

Statistical Analysis Software: CETIS™, version 1.8.7.20

Statistical analyses were conducted using EPA flowchart specifications as outlined in the test guidance manual (USEPA 1995). Organism performance in the sample dilution series was compared to that observed in the laboratory control exposure. Results were used to calculate the No Observed Effect Concentration (NOEC) and chronic toxic unit (TU_c) values.

Results were also analyzed using the USEPA's Test of Significant Toxicity (TST) approach specified in National Pollutant Discharge Elimination System Test of Significant Toxicity Implementation Document (USEPA 2010). Notably, the California State Water Resources Control Board (SWRCB) published a Draft Policy for Toxicity Assessment and Control (SWRCB 2012), which includes the TST as an alternative method to evaluate toxicity data. This approach applies a modified t-test that takes into account both the statistical power of the test and the magnitude of biological effects in determining the presence of a response. For this sample, the in-stream waste concentration (IWC) is 6.06 percent unadjusted effluent; results are reported as "Pass" if a sample is considered non-toxic at the IWC according to the TST calculation, or "Fail" if considered toxic at the IWC according to the TST. As the TST is not included in the CDP permit at this time, the TST analysis was performed for comparison purposes only.

Test ID: 1708-S112

Sample ID: M-001 Sample Date: August 11, 2017

Client: IDE Americas, Inc.

RESULTS

Statistically significant decreases in fertilization rates were observed at the 10 and 15 percent effluent concentrations compared to the lab control. The NOEC is reported as 6.06 and the TU_c is 16.5, which meets the maximum effluent limitation of 16.5 for this permit. None of the effluent concentrations were significantly reduced according to the TST analysis. Statistical results are summarized in Table 4, and detailed test results are summarized in Table 5. Raw test data and full statistical analyses can be found in Appendix A. Sample receipt information and copies of the chain-of-custody form are in Appendices B and C, respectively.

Table 4. Statistical Results for M-001 Purple Urchin Fertilization Testing

Sample ID	NOEC (% sample)	LOEC (% sample)	EC ₅₀ (% sample)		TST Result (Pass/Fail)	Percent Effect at IWC
M-001	6.06	10	>15	16.5	Pass	1.8

NOEC = No Observed Effect Concentration

LOEC = Lowest Observed Effect Concentration

 EC_{50} = Concentration expected to cause an adverse effect to 50 percent of the test organisms

TUc = Chronic Toxic Unit: 100÷NOEC

TST: Pass = sample is non-toxic at the IWC according to the TST calculation; Fail = sample is toxic at the IWC according to the TST calculation. The TST analysis is not in the existing CDP permit; TST analysis is included here for comparison purposes only. Percent effect (PE) from control is calculated as: PE= ((mean response in control-mean response in the IWC)/mean response in control) *100. A negative PE results when organism performance in the sample is greater than that in the control.

Table 5. Detailed Results of Purple Urchin Fertilization Testing for the M-001 Sample

Test Concentration (% Sample)	Mean Percent Fertilization
Lab Control	91.0
2.5	89.6
5.0	92.0
6.06	89.4
10	82.2*
15	77.2*

stAn asterisk indicates a statistically significant decrease compared to the lab control

Client: IDE Americas, Inc. Test ID: 1708-S112 Sample ID: M-001 Sample Date: August 11, 2017

QUALITY ASSURANCE

The sample was received on the day of collection and was within the appropriate temperature range. The test was initiated within the 36-hour holding time. The PMSD value, which is a measure of test variability, was within the acceptable limits. Statistical analyses followed USEPA flowchart selections and doseresponse relationships were reviewed to ensure the reliability of the data. Based on the dose responses observed during testing, the calculated effect concentrations reported are deemed reliable. Additionally, appropriate alpha levels were used for statistical analyses according to the TST Implementation Document guidelines (USEPA 2010).

Results for the concurrent reference toxicant test used to monitor laboratory performance and test organism sensitivity met all test acceptability criteria. The median effect (EC50) value calculated for this test was within two standard deviations (2SD) of the historical mean for our laboratory, indicating organisms were of typical sensitivity to copper. Results for the reference toxicant test are summarized in Table 6 and presented in full in Appendix D. A list of qualifier codes can be found in Appendix E.

Table 6. Urchin Fertilization Reference Toxicant Test Results

Test Date	EC ₅₀ (μg/L Copper)	Historical Mean EC ₅₀ ±2 SD (μg/L Copper)	CV (%)
8/11/17	69.0	45.7 ± 37.3	40.8

 EC_{50} = Concentration expected to cause an adverse effect to 50 percent of the test organisms Historical Mean EC₅₀ ± 2 SD = Mean of historical test results plus or minus two standard deviations CV = Coefficient of Variation

TOXICITY SUMMARY REPORT

Client: IDE Americas, Inc. Test ID: 1708-S112 Sample ID: M-001 Sample Date: August 11, 2017

REFERENCES

California Regional Water Quality Control Board Region 9, San Diego (RWQCB) 2006. Waste Discharge Requirements for the Poseidon Resources (Channelside) LLC, Carlsbad Desalination Project, Discharge to the Pacific Ocean via the Encina Power Station Discharge Channel. Order No. R9-2006-0065, NPDES No. CA109223. June 2006.

- California State Water Resources Control Board (SWRCB) 2012. Draft Policy for Toxicity Assessment and Control. June 2012. Sacramento, CA.
- Tidepool Scientific Software. 2000-2013. CETIS™ Comprehensive Environmental Toxicity Information System Software, Version 1.8.7.20
- USEPA. 1995. Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms. EPA/600/R-95/136.
- USEPA. 2010. National Pollutant Discharge Elimination System Test of Significant Toxicity Implementation Document. EPA/833/R-10/003. June 2010.

Appendix A

Test Data and Statistical Analyses

CETIS Summary Report

Report Date:

14 Aug-17 14:01 (p 1 of 1)

Test Code:

1708-S112 | 09-9826-9321

Echinoid Spe	rm Cell Fertiliza	tion Test	15C	,					***	Nautilu	s Environm	nental (CA)
Batch ID: Start Date: Ending Date: Duration:	08-1806-3626 11 Aug-17 14:5 11 Aug-17 15:3 40m	0 Pr 0 Sp	est Type: rotocol: pecies: purce:	Fertilization EPA/600/R-95/ Strongylocentro Pt. Loma		tus		Analys Diluen Brine: Age:	nt: La	poratory Sea t Applicable	water	
· ·	04-6369-0091 11 Aug-17 06:3 11 Aug-17 12:2 8h (2.5 °C)	0 M a	ode: aterial: ource: ation:	17-0888 Facility Effluent IDE Americas, M-001 (Daily)				Client: Projec		E rlsbad Desal	Plant	
Comparison	Summary											
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU		Method			
00-2162-7214	Fertilization Rat	te	6.06	10	7.785	7.14%	16.5	j	Dunnett	Multiple Com	parison Tes	st
Point Estimat	te Summary											
Analysis ID	Endpoint		Level	%	95% LCL	95% UCL	TU		Method			
14-4880-1895	Fertilization Rat	te	EC25 EC50	>15 >15	N/A N/A	N/A N/A	<6.6 <6.6		Linear In	terpolation (I	CPIN)	
Test Acceptal	bility											
Analysis ID	Endpoint		Attrib	ute	Test Stat	TAC Limi	its		Overlap	Decision		
00-2162-7214	Fertilization Rat	te	Contro	l Resp	0.91	0.7 - NL			Yes	Passes A	cceptability	Criteria
14-4880-1895				l Resp	0.91	0.7 - NL			Yes	Passes A	cceptability	Criteria
00-2162-7214	Fertilization Rat	te	PMSD		0.07136	NL - 0.25			No	Passes A	cceptability	Criteria
Fertilization F	Rate Summary											
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max		Std Err	Std Dev	CV%	%Effect
0	Lab Control	5	0.91	0.8796	0.9404	0.88	0.94		0.01095	0.02449	2.69%	0.0%
2.5		5	0.896	0.8444	0.9476	0.85	0.94		0.0186	0.04159	4.64%	1.54%
5		5	0.92	0.8838	0.9562	0.88	0.96	i	0.01304	0.02915	3.17%	-1.1%
6.06		5	0.894	0.8439	0.9441	0.83	0.94		0.01806	0.04037	4.52%	1.76%
10		5	0.822	0.7676	0.8764	0.75	0.87		0.0196	0.04382	5.33%	9.67%
15		5	0.772	0.6698	0.8742	0.7	0.89		0.0368	0.08228	10.66%	15.16%
Fertilization F	Rate Detail											
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5						
0	Lab Control	0.94	0.9	0.9	0.88	0.93						
2.5		0.94	0.87	0.94	0.88	0.85						
5		0.96	0.93	0.88	0.92	0.91						
6.06		0.9	0.94	0.91	0.83	0.89						
10		0.75	0.83	0.83	0.83	0.87						
15		0.89	0.75	0.7	0.7	0.82						

Report Date:

14 Aug-17 14:01 (p 1 of 2)

Test Code: 1708-S112 | 09-9826-9321

							Test	Code:	1/0	8-8112 09	9-9826-932
Echinoid Sp	erm Cell Fertiliz	ation Test	15C						Nautilus	Environn	nental (CA)
Analysis ID:	00-2162-7214		dpoint: Fer					S Version		.8.7	
Analyzed:	14 Aug-17 14:		alysis : Par	ametric-Cor	itroi vs. i rea	tments	Offic	ial Results	: Yes		
Data Transfo		Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU
Angular (Cor	rected)	NA —————	C > T	NA ———————	NA 		7.14%	6.06	10	7.785	16.5
Dunnett Mul	tiple Compariso	n Test									
Control	vs C-%		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision	(α:5%)		
Lab Control	2.5		0.4756	2.362	0.102 8	0.6575	CDF	Non-Sign	ificant Effect		· · · · · · · · · · · · · · · · · · ·
	5		-0.4543	2.362	0.102 8	0.9335	CDF	Non-Sign	ificant Effect		
	6.06		0.5761	2.362	0.102 8	0.6133	CDF	Non-Sign	ificant Effect		
	10*		3.031	2.362	0.102 8	0.0119	CDF	Significar	nt Effect		
	15*		4.381	2.362	0.102 8	0.0005	CDF	Significar	nt Effect		
ANOVA Tabl	е										
Source	Sum Squ	iares	Mean Squ	ıare	DF	F Stat	P-Value	Decision	(α:5%)		
Between	0.172309	2	0.0344618	34	5	7.38	0.0003	Significar	it Effect		
Error	0.112070	4	0.0046695	98	24						
Total	0.284379	5			29						
Distribution	al Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision(α:1%)			
Variances	Bartlett B	Equality of \	/ariance	3.378	15.09	0.6419	Equal Var	iances			***************************************
Distribution	Shapiro-	Wilk W Nor	mality	0.9657	0.9031	0.4284	Normal Di	stribution			
Fertilization	Rate Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	0.91	0.8796	0.9404	0.9	0.88	0.94	0.01095	2.69%	0.0%
2.5		5	0.896	0.8444	0.9476	0.88	0.85	0.94	0.0186	4.64%	1.54%
5		5	0.92	0.8838	0.9562	0.92	0.88	0.96	0.01304	3.17%	-1.1%
6.06		5	0.894	0.8439	0.9441	0.9	0.83	0.94	0.01806	4.52%	1.76%
10		5	0.822	0.7676	0.8764	0.83	0.75	0.87	0.0196	5.33%	9.67%
15		5	0.772	0.6698	0.8742	0.75	0.7	0.89	0.0368	10.66%	15.16%
Angular (Co	rrected) Transfor	med Sumr	mary	,							
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
	Lab Control	5	1.268	1.214	1.322	1.249	1.217	1.323	0.0195	3.44%	0.0%
0	Edb Control				4 000	4 047	1.173	1.323	0.03165	5.67%	1.62%
2.5	Lab Control	5	1.248	1.16	1.336	1.217	1.173	1.525	0.03100	3.07 /0	1.02 /0
2.5 5	Eab Control	5	1.248 1.288	1.16 1.219	1.336	1.217	1.217	1.369	0.02489	4.32%	-1.55%
2.5 5 6.06	Eab Control	5 5		1.219 1.163							
2.5 5	Eas Control	5	1.288	1.219	1.357	1.284	1.217	1.369	0.02489	4.32%	-1.55%

Report Date: Test Code: 14 Aug-17 14:01 (p 2 of 2) 1708-S112 | 09-9826-9321

Echinoid Sperm Cell Fertilization Test 15C Nautilus Environmental (CA) Analysis ID: 00-2162-7214 Endpoint: Fertilization Rate **CETIS Version:** CETISv1.8.7 Analyzed: 14 Aug-17 14:00 Analysis: Parametric-Control vs Treatments Official Results: Yes Graphics 1.0 0.14 0.9 0.12 Fertilization Rate 0.7 0.08 0.06 0.6 0.5 0.02 0.4 0.00 0.3 -0.02 -0.04 0.2 -0.06 0.1 -0,08 0.0 -0.10 0 LC 2.5 6.06 10 15 0.0 -2,5 -2.0 -1.5 -1.0 -0.5 0,5 1.0 1.5 2.0 C-% Rankits

Report Date:

14 Aug-17 14:01 (p 1 of 1)

Test Code:

1708-S112 | 09-9826-9321

Echinoid Spe	erm Cell Fertilization	Test 15C			Nautilus Environmental (CA)
Analysis ID:	14-4880-1895	Endpoint:	Fertilization Rate	CETIS Version:	CETISv1.8.7
Analyzed:	14 Aug-17 14:00	Analysis:	Linear Interpolation (ICPIN)	Official Results:	Yes

Linear Interpol	ation Options				
X Transform	Y Transform	Seed	Resamples	Exp 95% CL	Method
Linear	Linear	643577	1000	Yes	Two-Point Interpolation
Point Estimate	s				

Point E	Estimates					
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL
EC25	>15	N/A	N/A	<6.667	NA	NA
EC50	>15	N/A	N/A	<6.667	NA	NA

Fertilizat	tion Rate Summary			_							
C-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Lab Control	5	0.91	0.88	0.94	0.01095	0.02449	2.69%	0.0%	455	500
2.5		5	0.896	0.85	0.94	0.0186	0.04159	4.64%	1.54%	448	500
5		5	0.92	0.88	0.96	0.01304	0.02915	3.17%	-1.1%	460	500
6.06		5	0.894	0.83	0.94	0.01806	0.04037	4.52%	1.76%	447	500
10		5	0.822	0.75	0.87	0.0196	0.04382	5.33%	9.67%	411	500
15		5	0.772	0.7	0.89	0.0368	0.08228	10.66%	15.16%	386	500

Report Date:

14 Aug-17 14:02 (p 1 of 1)

Test Code:

1708-S112 | 09-9826-9321

	0 11 5 (11)		4 = 0		·						
Echinoid Sp	erm Cell Fertiliza	ation lest	15C	15.				***	Nautilus	Environn	nental (CA
Analysis ID:	11-1546-6990		dpoint: Fer					IS Version:	CETISv1.	8.7	
Analyzed:	14 Aug-17 14:	01 A n	alysis: Par	ametric Bio	equivalence-	-Two Sampl	e Offic	ial Results:	Yes		
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed	TST b	PMSD	NOEL	LOEL	TOEL	TU
Angular (Cori	rected)	NA	C*b < T	NA	NA	0.75	7.26%	15	>15	NA	6.667
TST-Welch's	t Test										
Control	vs C-%		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision(α:5%)		
Lab Control	2.5*		8.504	2.015	0.070 5	0.0002	CDF	Non-Signif	icant Effect		
	5*		11.67	1.943	0.056 6	< 0.0001	CDF	Non-Signif	icant Effect		
	6.06*		9.049	2.015	0.065 5	0.0001	CDF		icant Effect		
	10*		6.423	1.943	0.056 6	0.0003	CDF	Non-Signif	icant Effect		
	15*		2.629	2.132	0.104 4	0.0291	CDF	_	icant Effect		
ANOVA Tabl	е										
Source	Sum Squ	ares	Mean Squ	ıare	DF	F Stat	P-Value	Decision(α:5%)		
Between	0.172309	2	0.0344618	34	5	7.38	0.0003	Significant	Effect		
Error	0.112070	4	0.0046695	598	24						
Total	0.284379	5			29	nau.					
Distributiona	al Tests								Martin		
Attribute	Test			Test Stat	Critical	P-Value	Decision((a:1%)			
						1 Value	DCCISION	α. 1 70)			
Variances	Bartlett E	quality of \	/ariance	3.378	15.09	0.6419	Equal Var				
Variances Distribution		Equality of \						iances			
Distribution		-		3.378	15.09	0.6419	Equal Var	iances			
Distribution	Shapiro-	-		3.378	15.09	0.6419	Equal Var	iances	Std Err	CV%	%Effect
Distribution Fertilization	Shapiro-' Rate Summary	Wilk W Nor	mality	3.378 0.9657	15.09 0.9031	0.6419 0.4284	Equal Var Normal Di	iances stribution	Std Err 0.01095	CV% 2.69%	%Effect
Distribution Fertilization C-%	Shapiro- Rate Summary Control Type	Wilk W Nor	mality Mean	3.378 0.9657 95% LCL	15.09 0.9031 95% UCL	0.6419 0.4284 Median	Equal Var Normal Di	iances stribution Max		*****	
Distribution Fertilization C-% 0	Shapiro- Rate Summary Control Type	Count 5	Mean 0.91	3.378 0.9657 95% LCL 0.8796	15.09 0.9031 95% UCL 0.9404	0.6419 0.4284 Median 0.9	Equal Var Normal Di Min 0.88	iances stribution Max 0.94	0.01095	2.69%	0.0%
Distribution Fertilization C-% 0 2.5	Shapiro- Rate Summary Control Type	Count 5 5	Mean 0.91 0.896	3.378 0.9657 95% LCL 0.8796 0.8444	15.09 0.9031 95% UCL 0.9404 0.9476	0.6419 0.4284 Median 0.9 0.88	Equal Var Normal Di Min 0.88 0.85	Max 0.94 0.94	0.01095 0.0186	2.69% 4.64%	0.0% 1.54%
Distribution Fertilization C-% 0 2.5 5	Shapiro- Rate Summary Control Type	Count 5 5 5	Mean 0.91 0.896 0.92	3.378 0.9657 95% LCL 0.8796 0.8444 0.8838	15.09 0.9031 95% UCL 0.9404 0.9476 0.9562	0.6419 0.4284 Median 0.9 0.88 0.92	Equal Var Normal Di Min 0.88 0.85 0.88	Max 0.94 0.94 0.96	0.01095 0.0186 0.01304	2.69% 4.64% 3.17%	0.0% 1.54% -1.1%
Fertilization C-% 0 2.5 5 6.06	Shapiro- Rate Summary Control Type	Count 5 5 5 5	Mean 0.91 0.896 0.92 0.894	3.378 0.9657 95% LCL 0.8796 0.8444 0.8838 0.8439	15.09 0.9031 95% UCL 0.9404 0.9476 0.9562 0.9441	0.6419 0.4284 Median 0.9 0.88 0.92 0.9	Equal Var Normal Di Min 0.88 0.85 0.88 0.83	Max 0.94 0.94 0.96 0.94	0.01095 0.0186 0.01304 0.01806	2.69% 4.64% 3.17% 4.52%	0.0% 1.54% -1.1% 1.76%
Fertilization C-% 0 2.5 5 6.06 10 15	Shapiro- Rate Summary Control Type	Count 5 5 5 5 5 5	Mean 0.91 0.896 0.92 0.894 0.822 0.772	3.378 0.9657 95% LCL 0.8796 0.8444 0.8838 0.8439 0.7676	95% UCL 0.9404 0.9476 0.9562 0.9441 0.8764	0.6419 0.4284 Median 0.9 0.88 0.92 0.9 0.83	Equal Var Normal Di Min 0.88 0.85 0.88 0.83 0.75	Max 0.94 0.94 0.96 0.94 0.87	0.01095 0.0186 0.01304 0.01806 0.0196	2.69% 4.64% 3.17% 4.52% 5.33%	0.0% 1.54% -1.1% 1.76% 9.67%
Fertilization C-% 0 2.5 5 6.06 10 15 Angular (Cor	Shapiro- Rate Summary Control Type Lab Control	Count 5 5 5 5 5 5	Mean 0.91 0.896 0.92 0.894 0.822 0.772	3.378 0.9657 95% LCL 0.8796 0.8444 0.8838 0.8439 0.7676	95% UCL 0.9404 0.9476 0.9562 0.9441 0.8764	0.6419 0.4284 Median 0.9 0.88 0.92 0.9 0.83	Equal Var Normal Di Min 0.88 0.85 0.88 0.83 0.75	Max 0.94 0.94 0.96 0.94 0.87	0.01095 0.0186 0.01304 0.01806 0.0196	2.69% 4.64% 3.17% 4.52% 5.33%	1.54% -1.1% 1.76% 9.67%
Distribution Fertilization C-% 0 2.5 5 6.06 10 15 Angular (Cor	Shapiro- Rate Summary Control Type Lab Control	Count 5 5 5 5 5 5 5 med Sumr	Mean 0.91 0.896 0.92 0.894 0.822 0.772	3.378 0.9657 95% LCL 0.8796 0.8444 0.8838 0.8439 0.7676 0.6698	95% UCL 0.9404 0.9476 0.9562 0.9441 0.8764 0.8742	0.6419 0.4284 Median 0.9 0.88 0.92 0.9 0.83 0.75	Min 0.88 0.85 0.88 0.83 0.75 0.7	Max 0.94 0.94 0.96 0.94 0.87 0.89	0.01095 0.0186 0.01304 0.01806 0.0196 0.0368	2.69% 4.64% 3.17% 4.52% 5.33% 10.66%	0.0% 1.54% -1.1% 1.76% 9.67% 15.16%
Distribution Fertilization C-% 0 2.5 5 6.06 10 15 Angular (Cor C-% 0	Shapiro- Rate Summary Control Type Lab Control rrected) Transfor Control Type	Count 5 5 5 5 5 5 cmed Sumr	Mean 0.91 0.896 0.92 0.894 0.822 0.772 mary Mean	3.378 0.9657 95% LCL 0.8796 0.8444 0.8838 0.8439 0.7676 0.6698	95% UCL 0.9404 0.9476 0.9562 0.9441 0.8764 0.8742	0.6419 0.4284 Median 0.9 0.88 0.92 0.9 0.83 0.75	Min 0.88 0.85 0.88 0.75 0.7	Max 0.94 0.94 0.96 0.94 0.87 0.89	0.01095 0.0186 0.01304 0.01806 0.0196 0.0368	2.69% 4.64% 3.17% 4.52% 5.33% 10.66%	0.0% 1.54% -1.1% 1.76% 9.67% 15.16%
Pistribution Fertilization C-% 0 2.5 5 6.06 10 15 Angular (Core	Shapiro- Rate Summary Control Type Lab Control rrected) Transfor Control Type	Count 5 5 5 5 5 7 med Sumr Count 5	Mean 0.91 0.896 0.92 0.894 0.822 0.772 mary Mean 1.268	3.378 0.9657 95% LCL 0.8796 0.8444 0.8838 0.8439 0.7676 0.6698 95% LCL 1.214	95% UCL 0.9404 0.9476 0.9562 0.9441 0.8764 0.8742 95% UCL 1.322	0.6419 0.4284 Median 0.9 0.88 0.92 0.9 0.83 0.75 Median 1.249	Min 0.88 0.85 0.88 0.75 0.7	Max 0.94 0.94 0.96 0.94 0.87 0.89	0.01095 0.0186 0.01304 0.01806 0.0196 0.0368 Std Err 0.0195	2.69% 4.64% 3.17% 4.52% 5.33% 10.66% CV% 3.44%	0.0% 1.54% -1.1% 1.76% 9.67% 15.16% %Effect 0.0%
Distribution Fertilization C-% 0 2.5 5 6.06 10 15 Angular (Cor C-% 0 2.5 5	Shapiro- Rate Summary Control Type Lab Control rrected) Transfor Control Type	Count 5 5 5 5 5 cmed Sumr Count 5 5 5	Mean 0.91 0.896 0.92 0.894 0.822 0.772 mary Mean 1.268 1.248	3.378 0.9657 95% LCL 0.8796 0.8444 0.8838 0.7676 0.6698 95% LCL 1.214 1.16	95% UCL 0.9404 0.9476 0.9562 0.9441 0.8764 0.8742 95% UCL 1.322 1.336	0.6419 0.4284 Median 0.9 0.88 0.92 0.9 0.83 0.75 Median 1.249 1.217	Min 0.88 0.85 0.88 0.75 0.7 Min 1.217 1.173	Max 0.94 0.94 0.96 0.94 0.87 0.89 Max 1.323 1.323	0.01095 0.0186 0.01304 0.01806 0.0196 0.0368 Std Err 0.0195 0.03165	2.69% 4.64% 3.17% 4.52% 5.33% 10.66% CV% 3.44% 5.67%	0.0% 1.54% -1.1% 1.76% 9.67% 15.16% %Effect 0.0% 1.62%
Distribution Fertilization C-% 0 2.5 5 6.06 10 15 Angular (Cor C-% 0 2.5	Shapiro- Rate Summary Control Type Lab Control rrected) Transfor Control Type	Count 5 5 5 5 5 med Sumr Count 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Mean 0.91 0.896 0.92 0.894 0.822 0.772 mary Mean 1.268 1.248 1.288	3.378 0.9657 95% LCL 0.8796 0.8444 0.8838 0.7676 0.6698 95% LCL 1.214 1.16 1.219	95% UCL 0.9404 0.9476 0.9562 0.9441 0.8764 0.8742 95% UCL 1.322 1.336 1.357	0.6419 0.4284 Median 0.9 0.88 0.92 0.9 0.83 0.75 Median 1.249 1.217 1.284	Min 0.88 0.85 0.88 0.75 0.7 Min 1.217 1.173 1.217	Max 0.94 0.94 0.96 0.94 0.87 0.89 Max 1.323 1.323 1.369	0.01095 0.0186 0.01304 0.01806 0.0196 0.0368 Std Err 0.0195 0.03165 0.02489	2.69% 4.64% 3.17% 4.52% 5.33% 10.66% CV% 3.44% 5.67% 4.32%	0.0% 1.54% -1.1% 1.76% 9.67% 15.16% %Effect 0.0% 1.62% -1.55%

Report Date:

10 Aug-17 12:00 (p 1 of 1)

Test Code: 1708-5112-09-9826-9321/3B806189

Echinoid Sperm Cell Fertilization Test 15C

Nautilus Environmental (CA)

Start Date: i\ 10 Aug-17 End Date: \10 Aug-17

Species: Strongylocentrotus purpuratus **Protocol:** EPA/600/R-95/136 (1995)

Sample Code: 17- 03:38
Sample Source: IDE Americas, Inc.
Sample Station: M-001 40-pgt

Sample Date: \\1\(\) Aug-17

Material: Facility Effluent

C-%	Code	Rep	Pos	# Counted	# Fertilized	Notes
- /-			91	100	96	
			92		70	8111/17
			93	100	94	
			94		81	
			95	100	93	
			96	100	88	
			97		80	
			98	100	92	
			99	100	90	AAA
			100	100	99	
			101		90	
			102	100	94	
			103	100	91	
			104			
	-		105	100	91 88 83	
			106	100	₫ Ø ⊘ ⊃	
			107	100	75	
			108	100	75 §3	
			109	100	85	
			110	100	90	
			111	100	89	
			112	100	01	
			113	00	♥3	
			114	160	94 83 87	
			115	100	93	
			116	100	88	
			117	100	87	
			118	100	75	
			119	100	70	
			120	100	83	

BAO 9/8 8/11/17

CETIS Test Data Worksheet

Report Date:

10 Aug-17 12:00 (p 1 of 1)

Test Code: 1768-5112 09-9826-9321/3B806189

Echinoid Sperm Cell Fertilization Test 15C

Nautilus Environmental (CA)

Start Date: 11 10 Aug-17 End Date: 11/0 Aug-17

Species: Strongylocentrotus purpuratus **Protocol:** EPA/600/R-95/136 (1995)

Sample Code: 17- 0888

Sample Date: (11/0 Aug-17 Material: Facility Effluent Sample Source: IDE Americas, Inc.
Sample Station: M-001 40 ppt and issued

C-%	Code	Rep	Pos	# Counted		Notes
0	LC	1	93	00	96	RL 8/11/17
0	LC	2	101			
0	LC	3	99			
0	LC	4	105			
0	LC	5	115			
2.5		1	112	[00]	93	8/11/17 RC
2.5		2	114			
2.5		3	100			
2.5		4	116			
2.5		5	109			
5		1	91	60)	92	KC 8/11/17
5		2	95			
5		3	96			
5		4	98			
5		5	104		,	
6.06		1	110	100	88	K 8/11/17
6.06		2	102			
6.06		3	103			
6.06		4	108			
6.06		5	97			
10		1	118	100	83	RL 8/11/17
10		2	106			
10		3	113			
10		4	120			
10		5	117			
15		1	111	100	87	RL 8/11/17
15		2	107			
15		3	119			
15		4	92			
15		5	94			

QC:AU

EAD CU8 8/11/17

@ P6 Q18 8/14/17

Marine Chronic Bioassay

Water Quality Measurements

Client:

IDE

Test Species: S. purpuratus

Sample ID:

Paily ن مم*انعة خط* (40 ppt adjusted)

Start Date/Time: 8/1/0/2017

1450

Sample Log No.:

End Date/Time: 8/10/2017

Dilutions made by: #

Test No:

			Analyst:	AG OBD DM
			Readings	
Concentration %	DO (mg/L)	pH (units)	Salinity (ppt)	Temperature (°C)
Lab Control	8,5	8.67	0160	16.0
2.5	8.5	8.08	34,7	15.9
5.0	8.2	8.03	35.1	15.8
6.06	3.2	80.8	35.5	15,9
10	8.2	8.07	36.4	15,8
15	8.2	8.06	37.7	15.8

Co	ma	mo	n	te.
UU	8 G B I	ше	11	LS.

BAD (18 8/11/17 BAG Q188/11/17 6) PM Q18 8/11/17

QC Check:

Final Review: 😢 8/31/17

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

Marine Chronic Bioassay

Echinoderm Sperm-Cell Fertilization Worksheet

	•			•		
Client:	IDE			Start Date/Tim	ne: 8/11/2017 /	1450
Sample ID:	Daily M-00		_	End Date/Tim	ne: 8/11/2017	1536
Test No.:	1708-5211		_	· ·	es: <u>S. purpurat</u>	
	N 31	8			ce: Pllomo	-
Tech initials:		9/17		Date Collecte	ed: 7151/17	
Injection Time:	1355					
Sperm Absorbance at 40	0.998	(target range of (0.8 - 1.0 for density	of 4x10 ⁶ sperm/m	nl)	
Eggs Counted:		an: <u>\$3.</u> H X 5	$0 = \frac{4,170}{}$	_eggs/ml		
		et counts of 80 eggs per slide for a final dens		edgwick-		
	86	<u></u>				
Initial density:	4170 eggs/ml	= <u>&</u> dilut	tion factor	egg stock	<u>></u> Ĉ _ml	
Final density:	4000 eggs/ml	7.50	egg stock s seawater	seawater	<u>∽</u> ml	
Prepare the embryo stoo existing stock (1 part) ar			For example, if the	e dilution factor is	2.25, use 100	ml of
	,		Sperm:Egg Ratio	<u>)</u>		
Rangefinder Test:	2000:1 1600	<u>1200:1</u>	800:1 400:1	200:1	100:1	50:1
ml Sperm Stock	50 40		20 10	5.0	2.5	1.25
ml Seawater	0.0 10) 20	30 40	45	47.5	48.75
	Time	Rangefinder Rati	io: Fert.	Unfert.		
Sperm Added (100 μl):	1415	501,5011	70,68	3032		
Eggs Added (0.5 ml):	1425	100:1:1001	75,77	25,23		
Test Ended:	1435	2001, 2001	87,89	11.11		
		4001 4001	91,95	9.5		
		800:1, 600.1	96,98	4,2		
NOTE: Choose a sperm this range, choose the ra organism health, stage of	atio closest to 90 percen	s in fertilization betw t unless professiona	een 80 and 90 perc			
Definitive Test		Sperm:Egg Ratio	Used: <u>400; i</u>			
	Time		Fert.	Unfert.		
Sperm Added (100 μl):	1450	QC1	90	10		
Eggs Added (0.5 ml):	1510	QC2	88	17		
Test Ended:	1530	Egg Control 1		100		4
		Egg Control 2		100		
Comments:	(A) No Dilution	Required				

QC Check: <u>A C \$ 14 (17</u>

Final Review: 4/3/117

Appendix B

Sample Receipt Information

Nautilus Environmental 4340 Vandever Avenue San Diego, CA 92120

Client:	IDE
Sample ID:	Daily M-001
Test ID No(s).:	17080-5117

Sample (A, B, C):	/->			
Log-in No. (17-xxxx):	0868			
Sample Collection Date & Time:	8/11/17 0630			
Sample Receipt Date & Time:	8/11/17 1227			
Number of Containers & Container Type:	1-4L Ch31			
Approx. Total Volume Received (L):	-141			
Check-in Temperature (°C)	2.5			
Temperature OK? 1	⟨Ŷ N	ΥN	Y N	YN
DO (mg/L)	7.0			
pH (units)	7,91			
Conductivity (µS/cm)	4			
Salinity (ppt)	64.6			
Alkalinity (mg/L) ²	180			
Hardness (mg/L) ^{2, 3}	,			
Total Chlorine (mg/L)	20,02			
Technician Initials	72			

		Alkalinity: 117	Hardness or Salir	Lab ART Other: nity: 34001 Hardness or Salinity:	_
Test Performed:		Alkalinity:	Hardness or Salir		_
	Additional Control? Y N	_= Alkalir	nity:	Hardness or Salinity:	
Test Performed:				/ Lab ART Other:	
	Additional Control? Y N	Alkalinity: Alkalir		nity: Hardness or Salinity:	
Notes:	¹ Temperature of sample should	d be 0-6°C, if received more	e than 24 hours pa	st collection time.	
	² mg/L as CaCO3, ³ Measured	for freshwater samples only	y, NA = Not Applica	able	
Additional Comments:					

Sample Check-In Information

Sample Description:			
COUPLESS, CLE	HR, OPOR	LESS, NO	DEBRI

COC Complete (Y/N)	?		
ABC			
Filtration? Y N	}		
Pore Size:			
Organisms	or	Debris	
Salinity Adjustment?	Y(N)		
Test:	Source:	Targe	et ppt:
Test:	Source:	Targe	et ppt:
Test:	Source:	Targe	et ppt:
pH Adjustment? Y	N)	•	••
		В	С
Initial pH:			
Amount of HCI added:			
Final pH:			
Cl ₂ Adjustment? Y			L
	 А	В	С
Initial Free Cl ₂ :			
STS added:			
Final Free Cl ₂ :			
Sample Aeration? Y	(N)		
campic Actation:	A	В	С
Initial D.O.			
Duration & Rate			
Final D.O.			
Subsamples for Addi	tional Chem	istry Require	ed? Y (N
	r	iouy itequile	.u. 1 /N
Tech Initials A			
			m 1)
	QC Che	eck: <u>#C -</u>	3/14/1

Appendix C

Chain-of-Custody Form

CDP laoratory:	Turn Around Time
Entahlpy Laboratory:	Normal: X
WECK Laboratory:	RUSH (24 hr):
Nautilus:X	3 Days:
AIM:	5 Days:
Other:	??? Days

	and the state of the second and the state of	and the state of t	The second secon			and the second			Ot	ner:			??? Days
Project Name: NPDES Daily Tox		Project Manage		c	ontact Information: (70	50) 201-77	777	The same of the same of the same					
Special instruction: Sampled duri Sample collected to fulfill daily NI	ng product water tank PDES requirement. San	overflow via autosam nple is to be run unad	ipler by a series of grabs o justed. Start: 8/10/17 @ 1	ollected .5:15, En	at one hour intervals. d: 8/11/17 @ 06:30 KC				ANALYSES				NOTES:
						Fertilizatior							
						rtiji l							
		Glass=G Plastic=	Р			ic Fe							
	Yes=Y No=N	Acid=A Base=B		<u>tar 189</u> 0 d. Erindyk reserve		Chronic							
Drinkiı	ng Water=DW Seawa	ter=SW Soil=S Brine=	В	Pre									
Sample ID	Date	Time	Sample	Preservative	Container	Purple Urchin							
			Туре	:ive ?	Туре	urpl							
M-001 (17- 2630)	8/10-11/2017	15:15-06:30	SW	N	4L CUBIE	X					dia seria arabida	**************	TDS E772 not EC 0110 nos/our
					120012	- ^-							TDS - 57.72 ppt, EC - 81.19 mS/cm
	-												
								-					
										-			·
											and provide a second pro-	O with My rounge troop in graph of	
Relinquished By:			Time:		Received By:	/) ^			Time:				ole Condition Upon Receipt:
1 tour	1 006 5-	8/11/17	1037		Jue Van	LM	E		p133	K	Iced		Ambient orOC
MCV TOLA	L1412 20	07/11//	12:27pm		4012				1227		Iced		Ambient or <u>2.5</u> °c

NANTICUS 10: M-0888

Appendix D

Reference Toxicant Test Data and Statistical Analyses

CETIS Summary Report

Report Date:

14 Aug-17 13:44 (p 1 of 1)

Test Code: 170811sprt | 04-5796-5476

									1631 000	· .	170	o i ispir j o	4-3730-347
Echinoid Spe	rm Cell Fertiliza	tion Test 1	5C		·						Nautilus	s Environr	mental (CA
Batch ID: Start Date: Ending Date: Duration:	10-2735-1442 11 Aug-17 14:5 11 Aug-17 15:3 40m	0 Pro	t Type: tocol: ecies: urce:		0/R-95/ locentre	/136 (1995) otus purpura	tus		Analyst: Diluent: Brine: Age:		ural Seawate Applicable	ər	
Sample ID: Sample Date: Receive Date Sample Age:	•	Sou	de: terial: urce: tion:	170811: Copper Referen Copper	chloride ce Toxi	icant			Client: Project:	Inte	rnal		
Comparison	Summary											The state of the s	
Analysis ID	Endpoint		NOEL	. LO	EL	TOEL	PMSD	TU	Me	thod			
16-8916-0308	Fertilization Rat	te	<10	10		NA	2.79%		Du	nnett N	lultiple Com	parison Te	st
Point Estimat	e Summary		***************************************										
Analysis ID	Endpoint		Level	μg	/L	95% LCL	95% UCL	TU	Ме	thod			
07-8184-6783	Fertilization Rat	e	EC50	69.	03	66.04	72.15		Tri	nmed	Spearman-K	(ärber	
Test Acceptal	oility					*****							
Analysis ID	Endpoint		Attrib	ute		Test Stat	TAC Limi	its	Ov	erlap	Decision		
07-8184-6783	Fertilization Rat	e	Contr	ol Resp 0.912 0.7 - NL			Ye	anteresses de la company	Passes Ad	ceptability	Criteria		
16-8916-0308	Fertilization Rat	e	Contro	ol Resp		0.912	0.7 - NL		Ye	s	Passes Ad		
16-8916-0308	Fertilization Rat	e	PMSE)		0.02789	NL - 0.25		No			cceptability	
Fertilization F	Rate Summary												
C-μg/L	Control Type	Count	Mean	95	% LCL	95% UCL	Min	Max	c Sto	Err	Std Dev	CV%	%Effect
0	Lab Control	5	0.912	8.0	881	0.9359	0.88	0.93	3 0.0	08602	0.01924	2.11%	0.0%
10		5	0.878	0.8	676	0.8884	0.87	0.89	0.0	03742	0.008367	0.95%	3.73%
20		5	0.858	0.8	297	0.8863	0.83	0.89	0.0	102	0.0228	2.66%	5.92%
40		5	0.778	0.7	511	0.8049	0.75	0.8	0.0	09695	0.02168	2.79%	14.69%
80		5	0.412		652	0.4588	0.37	0.47	0.0	1685	0.03768	9.15%	54.82%
160		5	0	0		0	0	0	0	hidden and the second	0		100.0%
Fertilization R	tate Detail												
C-µg/L	Control Type	Rep 1	Rep 2	Re	р 3	Rep 4	Rep 5						
0	Lab Control	0.88	0.92	0.9	1	0.93	0.92						
10		0.87	0.88	0.8	8	0.89	0.87						
20		0.85	0.83	0.8	7	0.85	0.89						
40		0.75	0.76	0.8		0.79	0.79						
80		0.41	0.39	0.3	7	0.42	0.47						
160		0	0	0		0	0						

Report Date:

14 Aug-17 13:44 (p 1 of 2)

Test Code:	170811sprt 04-5796-5476

Echinoid Spe	rm Cell Fertiliza	ation Test 1	5C						Nautilus	Environ	mental (CA)
Analysis ID:	16-8916-0308	End	dpoint: Fe	rtilization Rat	te		CET	IS Version	: CETISv1	.8.7	
Analyzed:	14 Aug-17 13:	42 An a	alysis: Pa	rametric-Cor	ntrol vs Trea	tments	Offic	ial Results			
Data Transfor	m	Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	ΤU
Angular (Corre	cted)	NA	C > T	NA	NA		2.79%	<10	10	NA	
Dunnett Multi	ple Compariso	n Test									
Control	vs C-μg/L		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision	η(α:5%)		
Lab Control	10*		2.999	2.305	0.044 8	0.0120	CDF	Significa	nt Effect		
	20*		4.522	2.305	0.044 8	0.0004	CDF	Significa	nt Effect		
	40*		10.06	2.305	0.044 8	<0.0001	CDF	Significa			
	80*		30.36	2.305	0.044 8	<0.0001	CDF	Significa			
ANOVA Table											
Source	Sum Squ	ares	Mean Sq	uare	DF	F Stat	P-Value	Decision	η(α:5%)		
Between	1.059735		0.264933	В	4	296.3	<0.0001	Significar	nt Effect		
Error	0.017883	06	0.000894	153	20						
Total	1.077618			24							
Distributional	Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances	Bartlett E	quality of V	ariance	3.975	975 13.28 0.4094			Equal Variances			
Distribution	Shapiro-	Wilk W Nori	mality	0.9843	0.8877	0.9556	Normal Distribution				
Fertilization R	ate Summary										
C-μg/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	0.912	0.8881	0.9359	0.92	0.88	0.93	0.008602	2.11%	0.0%
10		5	0.878	0.8676	0.8884	0.88	0.87	0.89	0.003742	0.95%	3.73%
20		5	0.858	0.8297	0.8863	0.85	0.83	0.89	0.0102	2.66%	5.92%
40		5	0.778	0.7511	0.8049	0.79	0.75	8.0	0.009695	2.79%	14.69%
80		5	0.412	0.3652	0.4588	0.41	0.37	0.47	0.01685	9.15%	54.82%
160		5	0	0	0	0	0	0	0		100.0%
Angular (Corre	ected) Transfor	med Summ	nary								
C-μg/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	1.271	1.23	1.312	1.284	1.217	1.303	0.01466	2.58%	0.0%
10		5	1.214	1.198	1.23	1.217	1.202	1.233	0.005747	1.06%	4.46%
20	•	5	1.185	1.144	1.226	1.173	1.146	1.233	0.01481	2.79%	6.73%
40		5	1.081	1.048	1.113	1.095	1.047	1.107	0.01161	2.4%	14.98%
80		5	0.6967	0.6493	0.7442	0.6949	0.6539	0.7554	0.01709	5.49%	45.18%

160

5

0.05002

0.05001

0.05003

0.05002

0.05002

0.05002

0

0.0%

96.06%

C-µg/L

Report Date: Test Code:

Rankits

14 Aug-17 13:44 (p 2 of 2) 170811sprt | 04-5796-5476

Echinoid Sperm Cell Fertilization Test 15C Nautilus Environmental (CA) 16-8916-0308 Analysis ID: CETISv1.8.7 Endpoint: Fertilization Rate **CETIS Version:** Analyzed: 14 Aug-17 13:42 Analysis: Parametric-Control vs Treatments Official Results: Yes Graphics 1.0 F 0.06 0.9 Reject Null **-**0.04 **Z**@**Z** Fertilization Rate 0.7 Centered Corr. Angle 0.02 0.6 0.5 0.4 -0.02 0.2 -0.04 0.1 0.0 0 LC 10 20 40 80 160 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Report Date:

14 Aug-17 13:44 (p 1 of 1)

Test Code:

170811sprt | 04-5796-5476

Nautilus Environmental (CA)

07-8184-6783 Analysis ID:

Analyzed:

Endpoint: Fertilization Rate Analysis:

Trimmed Spearman-Kärber

CETIS Version: Official Results: Yes

CETISv1.8.7

Trimmed Spearman-Kärber Estimates

Echinoid Sperm Cell Fertilization Test 15C

14 Aug-17 13:43

Threshold Option Threshold Trim Sigma EC50 Mu 95% LCL 95% UCL Control Threshold 0.088 3.73% 1.839 0.009606 69.03 66.04 72.15

Fertilizati	Fertilization Rate Summary			Calculated Variate(A/B)							
C-µg/L	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Lab Control	5	0.912	0.88	0.93	0.008602	0.01924	2.11%	0.0%	456	500
10		5	0.878	0.87	0.89	0.003742	0.008367	0.95%	3.73%	439	500
20		5	0.858	0.83	0.89	0.0102	0.0228	2.66%	5.92%	429	500
40		5	0.778	0.75	0.8	0.009695	0.02168	2.79%	14.69%	389	500
80		5	0.412	0.37	0.47	0.01685	0.03768	9.15%	54.82%	206	500
160		5	0	0	0	0	0		100.0%	0	500

Echinoid Sperm Cell Fertilization Test 15C

Sigma:

18.65

CV:

40.80%

Nautilus Environmental (CA)

Test Type: Fertilization Organism: Strongylocentrotus purpuratus (Purpl Material: Copper chloride

Protocol: EPA/600/R-95/136 (1995) Endpoint: Fertilization Rate Source: Reference Toxicant-REF

Echinoid Sperm Cell Fertilization Test 15C

+2s Warning Limit:

82.97

+3s Action Limit: 101.6

Quali	ty Con	trol Data	а								
Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2017	Jun	21	14:17	42.15	-3.518	-0.1887			20-6379-6831	00-5386-2071
2			22	17:25	50.05	4.375	0.2346			10-9823-5082	04-6220-9409
3			23	16:55	41.8	-3.867	-0.2074			06-0771-4160	11-6079-2504
4			24	13:27	51.33	5.659	0.3034			01-7420-9579	03-5890-9605
5			27	13:13	29.77	-15.9	-0.8526			11-6174-9094	14-8592-6950
6			28	14:40	32.02	-13.65	-0.732			06-0030-2581	03-5443-1685
7			30	17:50	39.38	-6.293	-0.3374			19-1859-0537	20-9128-8719
8		Jul	7	17:35	64.49	18.82	1.009			20-4636-3738	10-9356-2953
9			11	11:33	25.05	-20.62	-1.105			09-0588-2471	00-1661-1655
10			13	15:20	37.5	-8.173	-0.4382			05-9787-5418	02-0541-0147
11			19	16:28	50.59	4.919	0.2637			03-3446-7266	15-7259-8466
12			20	18:10	31.52	-14.15	-0.7587			17-7484-2488	03-0485-5429
13			27	15:55	99.32	53.65	2.877	(+)		02-6715-3770	17-8186-2444
14			28	10:50	77.84	32.17	1.725			21-2559-1280	14-0688-6070
15		Aug	2	15:50	50.06	4.385	0.2351			08-9742-2478	08-8646-9232
16			3	0:00	34.43	-11.24	-0.6025			02-7356-2235	20-3051-4002
17			5	19:25	23.07	-22.6	-1.212			11-5994-0488	10-6029-2098
18			7	15:10	59.94	14.27	0.7651			21-2468-7505	14-3489-7019
19			9	17:08	31.92	-13.75	-0.7375			13-6999-3036	11-7131-4234
20			10	16:51	41.14	-4.534	-0.2431			00-5471-5288	12-0643-2211
21			11	14:50	69.03	23.36	1.253			04-5796-5476	07-8184-6783

CETIS Test Data Worksheet

Report Date: Test Code:

10 Aug-17 12:12 (p 1 of 1) 04-5796-5476/170811sprt

Echinoid Sperm Cell Fertilization Test 15C

Nautilus Environmental (CA)

Start Date:	11 Aug-17	Species:	Strongylocentrotus purpuratus	Sample Code:	170811sprt
End Date:	11 Aug-17	Protocol:	EPA/600/R-95/136 (1995)	Sample Source:	Reference Toxicant
Sample Date:	11 Aug-17	Material:	Copper chloride	Sample Station:	Copper Chloride

C-µg/L	Code	Pon	Pos	# Counted	# Fertilized	Notes
C-µg/L	Code	Kep				Notes
			1	100	92	
	-		2		85 0 879	
			3		0	
			4		98-79 989	
			5		999	
			6		13	
			7		37	
			8		42	
			9		0	
			10		88	
			11		85	
			12		85 76	
			13			
			14		87	
			15		87 39	
			16			
			17		\$ 8	
			18		92	
			19		79	
			20		89	
			21		87	
			22		41	
			23		87	
···			24		80	
			25	ĺ	47	
			26		91	
			27		0	
			28		93	,
			29		83 88	
			30		22	

BAGB SIHIT

Analyst: A QA: 1478/21/17

CETIS Test Data Worksheet

Start Date:

End Date:

Report Date:

10 Aug-17 12:12 (p 1 of 1) 04-5796-5476/170811sprt

Test Code:

Nautilus Environmental (CA)

Echinoid Sperm Cell Fertilization Test 15C

11 Aug-17 11 Aug-17

Strongylocentrotus purpuratus Species:

Protocol: EPA/600/R-95/136 (1995)

Sample Code:

170811sprt

Sample Source: Reference Toxicant

ample Date		\ua-17			il: Copper ch	loride	Sample Station: Copper Chlo	
C-µg/L		Rep		# Counted	# Fertilized		Notes	
0	LC	1	16	100	88	N 911117	Notes	
0	LC	2	18	100	80	AG 8/11/17		
0	LC	3	26					
0	LC	4	28		24 x x x x x x x x x x x x x x x x x x x			
0	LC	5	1					
10		1	23	100	88			
10		2	30	100	00			· · · · · · · · · · · · · · · · · · ·
10		3	10					
10		4	20					
10		5	14					
20		1	2	100	P3 <			
20		2	29	100	85			
20	-	3	21					
20		4	11	LANGE CO.				
20	-	5	5					
40		1	6					
40		2	12	1.00	82			
40		3	24	100	O &n-			
40		4	19	10.00				
40	1	5	4					
80	1	1	22	100	41			
80		2	15	100	- T			
80		3	7					
80		4	8					
80		5	25					***************************************
160		1	17	100	0			
160		2	27	100				
160		3	3					
160		4	9					
160		5	13					

QC:AL

M	arine	Chro	nic	Bioa	ssav
181			/	$\omega \circ \omega$	3301A

Water Quality Measurements

Client:

Internal

Test Species: S. purpuratus

Sample ID:

CuCl₂

Start Date/Time: 8/11/2017

450

Test No:

170811sprt

End Date/Time: 8/11/2017

530

Dilutions made by:

by: Av

High conc. made (μg/L): 160
Vol. Cu stock added (mL): 7, 8

Final Volume (mL): 500

Cu stock concentration (μg/L):

Analyst: A

		I		
Concentration	DO	рН	eadings Salinity	Temperature
(μg/L)	(mg/L)	(units)	(ppt)	(°C)
Lab Control	8.0	8-08	33,5	15.8
10	8.0	8.07	34.0	15.8
20	8.(8.07	34.0	15.7
40	8.1	8.08	34.0	15.6
80	8.1	8.07	33, 9	15.7
160	8.0	8.07	33.7	159

Comments:		
	f. 1	, 1
QC Check:	ACCIV/17	Final Review: PTP82117

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

Marine Chronic Bioassay

Echinoderm Sperm-Cell Fertilization Worksheet

	•			•		
Client: Sample ID: Test No.:	Internal Cuciz 1708115prt			Start Date/Time End Date/Time Species Animal Source	e: 8/11/2017 / s: S. purpuratus	1750 1750
Tech initials: Injection Time:	A6 1355			Date Collected		
Sperm Absorbance at 40	00 nm: <u>0.998</u>	(target range of 0.8	- 1.0 for density of	of 4x10 ⁶ sperm/ml)	
Eggs Counted:		n: <u>\$3.4</u> x 50	= 4,170	eggs/ml		
		t counts of 80 eggs per v		edgwick-		
Initial density: Final density:	4000 eggs/ml		i factor ig stock eawater	egg stock 15 seawater 2	ml ml	
	ck according to the calcul and 125 ml of dilution wate	ated dilution factor. Fo		e dilution factor is	2.25, use 100 r	nl of
		*	Sperm:Egg Ratio			
Rangefinder Test: ml Sperm Stock ml Seawater	2000:1 1600: 50 40 0.0 10	<u>1200:1</u> <u>30</u>	00:1 400:1 20 10 30 40		2.5	50:1 1.25 8.75
Sperm Added (100 μl): Eggs Added (0.5 ml): Test Ended:	Time 1415 1425 1435	Rangefinder Ratio: 50:1, 50:1 (00:1, 100:1) (00:1, 100:1) (00:1, 100:1) (00:1, 100:1)	Fert. 70,68 75,77 89,89 91,95 96,98	Unfert. 30,37 25,23 11,11 4,5		
this range, choose the r	n-to-egg ratio that results atio closest to 90 percent of reproductive season, si	in fertilization betweer unless professional ju	n 80 and 90 perce	ent. If more than consideration of o	one concentrat other factors (e	ion is within .g.,
Definitive Test		Sperm:Egg Ratio Us	sed: <u>400; 1</u>			
Sperm Added (100 µl): Eggs Added (0.5 ml): Test Ended:	Time 1450 1510 1530	QC1 QC2 Egg Control 1 Egg Control 2	Fert. 90 88	Unfert. 10 10 100		
Comments:	A) No Dilution	Returned				
OC Check:	AC Blitter			Final Revie	w: KFP 8/2	 ulli

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

Appendix E

Qualifier Codes

Glossary of Qualifier Codes:

- Q1 Temperatures out of recommended range; corrective action taken and recorded in Test Temperature Correction Log
- Q2 Temperatures out of recommended range; no action taken, test terminated same day
- Q3 Sample aerated prior to initiation or renewal due to dissolved oxygen (D.O.) levels below 6.0 mg/L
- Q4 Test aerated; D.O. levels dropped below 4.0 mg/L
- Q5 Test initiated with aeration due to an anticipated drop in D.O.
- Q6 Airline obstructed or fell out of replicate and replaced; drop in D.O. occurred
- Q7 Salinity out of recommended range
- Q8 Spilled test chamber/ Unable to recover test organism(s)
- Q9 Inadequate sample volume remaining, 50% renewal performed
- Q10 Inadequate sample volume remaining, no renewal performed
- Q11 Sample out of holding time; refer to QA section of report
- Q12 Replicate(s) not initiated; excluded from data analysis
- Q13 Survival counts not recorded due to poor visibility or heavy debris
- Q14 D.O. percent saturation was checked and was ≤ 110%
- Q15 Did not meet minimum test acceptability criteria. Refer to QA section of report.
- Q16 Percent minimum significant difference (PMSD) was <u>below</u> the lower bound limit for acceptability. This indicates that statistics may be over-sensitive in detecting a difference from the control due to low variability in the data set.
- Q17 Percent minimum significant difference (PMSD) was <u>above</u> the upper bound limit for acceptability. This indicates that statistics may be under-sensitive in detecting a difference from the control due to high variability in the data set.
- Q18 Incorrect Entry
- Q19 Illegible Entry
- Q20 Miscalculation
- Q21 Other (provide reason in comments section)
- Q22 Greater than 10% mortality observed upon receipt and/or in holding prior to test initiation.
 Organisms acclimated to test conditions at Nautilus and ultimately deemed fit to use for testing.
- Q23 Test or ganisms r eceived at a <u>temperature</u> greater than 3°C ou tside the r ecommended t est temperature range. However, due to age-specific protocol requirements and/or sample holding time constraints, the organisms were used to initiate tests upon the day of arrival. O rganisms were acclimated to the appropriate test conditions upon receipt and prior to test initiation.
- Q24 Test organisms received at <u>salinity</u> greater than 3 ppt outside of the recommended test salinity range. H owever, due t o age -specific pr otocol r equirements and/ or s ample ho lding t ime constraints, the organisms were used to initiate tests upon the day of arrival. Organisms were acclimated to the appropriate test conditions upon receipt and prior to test initiation.

Updated: 6/30/15