

Chronic Toxicity Test Results for the Carlsbad Desalination Plant

❖ Sample ID: Daily M-001 Sample Collection Date: April 16, 2017

Prepared for: IDE AMERICAS, Inc.

4590 Carlsbad Boulevard Carlsbad, CA 92008

Prepared by: Nautilus Environmental

Submitted: May 5, 2017

Data Quality Assurance:

- Nautilus Environmental is accredited in accordance with NELAP by the State of Oregon Environmental Laboratory Accreditation Program (Certificate No. 4053). It is also certified by the State of California Department of Health Services Environmental Laboratory Accreditation Program (Certificate No. 1802) and the State of Washington Department of Ecology (Lab ID C552).
- All data have been reviewed and verified.
- All test results have met minimum test acceptability criteria under their respective EPA protocols, unless otherwise noted in this report.
- o All test results have met internal Quality Assurance Program requirements.

California 4340 Vandever Avenue

4340 Vandever Avenue San Diego, California 92120 858.587.7333 fax: 858.587.3961

Results verified by:

EXECUTIVE SUMMARY

DAILY CHRONIC TOXICITY TESTING CARLSBAD DESALINATION PLANT — APRIL 2017 ORDER NO. R9-2006-0065; NPDES NO. CA0109223

Sampling Date: April 16, 2017

Test Date: April 17, 2017

Sample ID: Daily M-001 Effluent (Shutdown Period)

Effluent Limitation: 16.5 TU_c

Results Summary:

	Test Date	Effluent Resu		Effluent Limitation
Bioassay Type:		<u>NOEC</u>	<u>TU</u> c	Met? (Yes/No)
Urchin Fertilization	4/17/2017	15	<6.67	Yes

Client: IDE Americas, Inc. Test ID: 1704-S085 Sample ID: Daily M-001 Sample Date: April 16, 2017

INTRODUCTION

A discharge sample was collected in April 2017 for the Poseidon Resources (Channelside) LLC, Carlsbad Desalination Project (CDP) permit for chronic toxicity monitoring purposes. The discharge sample was collected from the CDP M-001 discharge monitoring point during a time of plant shut down. Daily chronic toxicity testing for the effluent sample was conducted during this time according to the permit that was adopted in 2006 (Order No. R9-2006-0065). Bioassay testing was conducted at the Nautilus Environmental (Nautilus) laboratory in San Diego, California on April 17, 2017 using the purple urchin (Strongylocentrotus purpuratus) chronic fertilization test.

MATERIALS AND METHODS

The composite sample was collected on April 16, 2017. Sample collection and delivery were performed by IDE Americas, Inc. (IDE) personnel. Following arrival at Nautilus, an aliquot of the water sample was poured off and the following water quality parameters were measured: pH, dissolved oxygen (DO), temperature, salinity, alkalinity, and total chlorine. The sample was stored at 40 C in the dark until used for testing. A summary of the sample collection and receipt information is provided in Table 1, and water quality parameters measured upon receipt at Nautilus are presented in Table 2. Testing was conducted in accordance with the protocols described in USEPA 1995, and the methods are summarized in Table 3.

Table 1. Sample Information

Client/Project: IDE Americas, Inc./Carlsbad Desalination Plant

Sample ID: Daily M-001

Monitoring Period: April 2017 (shutdown period)

Sample Material: Facility Effluent

Sampling Method: Composite

Sample Collection Date, Time: 4/16/17, 08:00 Sample Receipt Date, Time: 4/17/17, 12:28

Table 2. Water Quality Measurements for the Daily M-001 Sample upon Receipt

Sample Collection	рН	DO	Temp	Salinity	Alkalinity	Total Chlorine
Date		(mg/L)	(°C)	(ppt)	(mg/L as CaCO ₃)	(mg/L)
4/16/17	7.53	8.2	2.0	34.2	120	< 0.02

Client: IDE Americas, Inc. Test ID: 1704-S085 Sample ID: Daily M-001 Sample Date: April 16, 2017

Table 3. Echinoderm Fertilization Chronic Bioassay Specifications

Test Date, Times: 4/17/17, 17:03 through 17:43

Test Organism: Strongylocentrotus purpuratus (purple sea urchin) Test Organism Source: Field-collected off Point Loma in San Diego, CA

Natural seawater (source: Scripps Institution of Oceanography (SIO) Lab Control/Dilution Water:

inlet), 34±2 parts per thousand (ppt); 20-µm filtered

2.5, 5.0, 6.06, 10, and 15 percent unadjusted M-001 sample; lab **Test Concentrations:**

control.

5 replicates, 2000 eggs per replicate. Sperm to egg ratio determined Number of Replicates, Organisms

per Replicate: before each test with a preliminary rangefinding test.

Test Chamber Type, Volume per

Replicate:

Glass scintillation vial containing 10 mL of test solution

Protocol Used: EPA/600/R-95/136, 1995 West Coast Marine Chronic

Fertilization; 20-min sperm exposure to effluent followed by a 20-Test Type:

min fertilization period

Mean fertilization ≥70% in the control, and percent minimum Acceptability Criteria:

significant difference (PMSD) value <25%

Reference Toxicant Testing: Copper chloride

CETIS™, version 1.8.7.20 Statistical Analysis Software:

Statistical analyses were conducted using EPA flowchart specifications as outlined in the test guidance manual (USEPA 1995). Organism performance in the sample dilution series was compared to that observed in the laboratory control exposure. Results were used to calculate the No Observed Effect Concentration (NOEC) and chronic toxic unit (TU_c) values.

Results were also analyzed using the USEPA's Test of Significant Toxicity (TST) approach specified in National Pollutant Discharge Elimination System Test of Significant Toxicity Implementation Document (USEPA 2010). Notably, the California State Water Resources Control Board (SWRCB) published a Draft Policy for Toxicity Assessment and Control (SWRCB 2012), which includes the TST as an alternative method to evaluate toxicity data. This approach applies a modified t-test that takes into account both the statistical power of the test and the magnitude of biological effects in determining the presence of a response. For this sample, the in-stream waste concentration (IWC) is 6.06 percent unadjusted effluent, and results are reported as "Pass" if a sample is considered non-toxic at the IWC according to the TST calculation, or "Fail" if considered toxic at the IWC according to the TST. As the TST is not included in the CDP permit at this time, the TST analysis was performed for comparison purposes only.

Client: IDE Americas, Inc. Test ID: 1704-S085 Sample ID: Daily M-001 Sample Date: April 16, 2017

RESULTS

There was no statistically significant decrease in the fertilization rate in any of the sample concentrations tested compared to that in the lab control. Therefore, the NOEC is reported as 15 percent effluent and a TU_c of less than 6.67, which is below the permit limit of 16.5. Additionally, none of the effluent concentrations tested were statistically significant using to the TST calculation. Statistical results are summarized in Table 4, and detailed test results are summarized in Table 5. Raw test data and full statistical analyses can be found in Appendix A. Sample receipt information and copies of the chain-of-custody form are in Appendices B and C, respectively.

Table 4. Statistical Results for Daily M-001 Purple Urchin Fertilization Testing

Sample ID	NOEC (% sample)	LOEC (% sample)			TST Result (Pass/Fail)	Percent Effect at IWC
Daily M-001	15	>15	>15	<6.67	Pass	0.85

NOEC = No Observed Effect Concentration

LOEC = Lowest Observed Effect Concentration

EC₅₀ = Concentration expected to cause an adverse effect to 50 percent of the test organisms

TU_c = Chronic Toxic Unit: 100÷NOEC

TST: Pass = sample is non-toxic at the IWC according to the TST calculation; Fail = sample is toxic at the IWC according to the TST calculation. The TST analysis is not in the existing CDP permit; TST analysis is included here for comparison purposes only. Percent effect (PE) from control is calculated as: PE= ((mean response in control-mean response in the IWC)/mean response in control) *100. A negative PE results when organism performance in the sample is greater than that in the control.

Table 5. Detailed Results of Purple Urchin Fertilization Testing for the Daily M-001 Sample

Test Concentration (% Effluent)	Mean Percent Fertilization				
Lab Control	94.0				
2.5	91.6				
5.0	94.4				
6.06	93.2				
10	91.0				
15	90.4				

TOXICITY SUMMARY REPORT

Client: IDE Americas, Inc. Test ID: 1704-S085 Sample ID: Daily M-001 Sample Date: April 16, 2017

QUALITY ASSURANCE

The sample was received on the day after collection and was within the appropriate temperature range. The test was initiated within the 36-hour holding time. The PMSD value, which is a measure of test variability, was within the acceptable limits. Statistical analyses followed USEPA flowchart selections and the dose-response relationship was reviewed to ensure the reliability of the data. Based on the dose response observed during testing, the calculated effect concentrations reported are deemed reliable. Additionally, appropriate alpha levels were used for statistical analyses according to the TST Implementation Document guidelines (USEPA 2010).

Results for the concurrent reference toxicant test used to monitor laboratory performance and test organism sensitivity met all test acceptability criteria. The median effect (EC₅₀) value calculated for this test was within two standard deviations (2SD) of the historical mean for our laboratory, indicating organisms were of typical sensitivity to copper. Results for the reference toxicant test are summarized in Table 6 and presented in full in Appendix D. A list of qualifier codes can be found in Appendix E.

Table 6. Urchin Fertilization Reference Toxicant Test Results

Test Date	EC ₅₀ (μg/L Copper)	Historical Mean EC ₅₀ ±2 SD (μg/L Copper)	CV (%)
4/17/17	51.7	55.5 ± 44.6	40.1

EC₅₀ = Concentration expected to cause an adverse effect to 50 percent of the test organisms Historical Mean EC₅₀ ± 2 SD = Mean of historical test results plus or minus two standard deviations CV = Coefficient of Variation

TOXICITY SUMMARY REPORT

Client: IDE Americas, Inc. Test ID: 1704-S085 Sample ID: Daily M-001 Sample Date: April 16, 2017

REFERENCES

California State Water Resources Control Board (SWRCB) 2012. Draft Policy for Toxicity Assessment and Control. June 2012. Sacramento, CA.

- Tidepool Scientific Software. 2000-2013. CETIS™ Comprehensive Environmental Toxicity Information System Software, Version 1.8.7.20
- USEPA. 1995. Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms. EPA/600/R-95/136.
- USEPA. 2010. National Pollutant Discharge Elimination System Test of Significant Toxicity Implementation Document. EPA/833/R-10/003. June 2010.

Appendix A

Test Data and Statistical Analyses

CETIS Summary Report

Report Date: Test Code:

03 May-17 18:07 (p 1 of 1)

1704-S085 | 02-9246-1285

Echinoid Sper	m Cell Fertilizat	ion Test	15C							Nautilus	Environm	nental (CA)
Batch ID: Start Date: Ending Date: Duration:	17 Apr-17 17:03 Protocol:		otocol: pecies:	EPA/600/R-95/136 (1995) Strongylocentrotus purpuratus Pt. Loma						ıral Seawate Applicable	er er	
-	17-0562-6790							Client: Project:				
Comparison S	Summary											
Analysis ID 14-8538-5865 02-8829-6941	is ID Endpoint NOE 8-5865 Fertilization Rate 15			- LOEL >15 >15	NA NA	PMSD 2.41% 4.65%	TU 6.66 6.66		-Welc	h's t Test lultiple Com	parison Tes	st
Test Acceptab	oility											
Fertilization R C-%	Endpoint Fertilization Rat Fertilization Rat Fertilization Rat Fertilization Rat ate Summary Control Type Lab Control	e e e Count	Mean 0.94	ol Resp ol Resp D D 95% LCL 0.9038	0.94 0.94 0.04646 0.02415 95% UCL 0.9762	TAC Lim 0.7 - NL 0.7 - NL NL - 0.25 NL - 0.25 Min 0.9	Max 0.98	Yes Yes No No Std	Err 304	Passes Ad Passes Ad Passes Ad Std Dev 0.02915	cceptability cceptability cceptability cceptability CV% 3.1%	Criteria Criteria Criteria **Effect 0.0%
2.5 5 6.06 10 15		5 5 5 5 5	0.916 0.944 0.932 0.91 0.904	0.9154 0.8933 0.8635	0.9549 0.9726 0.9707 0.9565 0.9266	0.87 0.92 0.89 0.88 0.88	0.95 0.97 0.96 0.97 0.93	0.01 0.01 0.01	03 393	0.0313 0.02302 0.03114 0.03742 0.01817	3.42% 2.44% 3.34% 4.11% 2.01%	2.55% -0.43% 0.85% 3.19% 3.83%
Fertilization R	ate Detail											
C-% 0 2.5 5 6.06 10	Control Type Lab Control	Rep 1 0.98 0.87 0.95 0.89 0.88	Rep 2 0.94 0.93 0.92 0.96 0.92	0.9 0.95 0.96 0.91	Rep 4 0.95 0.9 0.97 0.94 0.97	Rep 5 0.93 0.93 0.92 0.96 0.88						
15		0.88	0.88	0.93	0.91	0.80						

Report Date: Test Code:

03 May-17 18:07 (p 1 of 4)

1704-S085 | 02-9246-1285

							lest	Code:	1704	-3005 02	2-9246-1285
Echinoid Sp	erm Cell Fertiliza	tion Test 1	5C						Nautilus	Environn	nental (CA)
Analysis ID:	02-8829-6941	End	point: Fer	tilization Rat	e		CETI	S Version:	CETISv1.	8.7	
Analyzed:	03 May-17 18:0	07 Ana	lysis: Par	ametric-Con	trol vs Treat	ments	Offic	ial Results	: Yes		
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU
Angular (Corr	rected)	NA	C > T	NA	NA		4.65%	15	>15	NA	6.667
Dunnett Mul	tiple Comparisor	n Test									
Control	vs C-%		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision	(α:5%)		
Lab Control	2.5		1.343	2.362	0.087 8	0.2785	CDF	Non-Sign	ificant Effect		
	5		-0.1626	2.362	0.087 8	0.8769	CDF	Non-Sign	ificant Effect		
	6.06		0.4811	2.362	0.087 8	0.6552	CDF	Non-Sign	ificant Effect		
	10		1.552	2.362	0.087 8	0.2075	CDF	Non-Sign	ificant Effect		
	15		1.985	2.362	0.087 8	0.1021	CDF	Non-Sign	ificant Effect		
ANOVA Tabl	e										
Source	Sum Squ	ares	Mean Sqเ	Square DF F Stat		F Stat	P-Value	Decision	(α:5%)		A200-25-20-20-20-20-20-20-20-20-20-20-20-20-20-
Between	0.0264672	28	0.0052934	56	5	1.563	0.2085	Non-Sign	ificant Effect		
Error	0.0813050	07	0.0033877	87711 24		_					
Total	0.1077724	4			29						
Distributiona	al Tests										
Attribute	Test			Test Stat	Critical P-Value Decision(α:1%)						
Variances	Bartlett E	quality of V	ariance	2.746	15.09	0.7391	Equal Var	iances			
Distribution	Shapiro-	Wilk W Norr	nality	0.9673	0.9031	0.4672	Normal Distribution				
Fertilization	Rate Summary					<u> </u>					
C-%											
	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	Count 5	Mean 0.94	95% LCL 0.9038	95% UCL 0.9762	Median 0.94	Min 0.9	Max 0.98	Std Err 0.01304	CV %	%Effect 0.0%
0 2.5											
-		5	0.94	0.9038	0.9762	0.94	0.9	0.98	0.01304	3.1%	0.0%
2.5		5 5	0.94 0.916	0.9038 0.8771	0.9762 0.9549	0.94 0.93	0.9 0.87	0.98 0.95	0.01304 0.014	3.1% 3.42%	0.0% 2.55%
2.5 5		5 5 5	0.94 0.916 0.944	0.9038 0.8771 0.9154	0.9762 0.9549 0.9726	0.94 0.93 0.95	0.9 0.87 0.92	0.98 0.95 0.97	0.01304 0.014 0.0103	3.1% 3.42% 2.44%	0.0% 2.55% -0.43%
2.5 5 6.06		5 5 5 5	0.94 0.916 0.944 0.932	0.9038 0.8771 0.9154 0.8933	0.9762 0.9549 0.9726 0.9707	0.94 0.93 0.95 0.94	0.9 0.87 0.92 0.89	0.98 0.95 0.97 0.96	0.01304 0.014 0.0103 0.01393	3.1% 3.42% 2.44% 3.34%	0.0% 2.55% -0.43% 0.85%
2.5 5 6.06 10 15		5 5 5 5 5 5	0.94 0.916 0.944 0.932 0.91 0.904	0.9038 0.8771 0.9154 0.8933 0.8635	0.9762 0.9549 0.9726 0.9707 0.9565	0.94 0.93 0.95 0.94 0.9	0.9 0.87 0.92 0.89 0.88	0.98 0.95 0.97 0.96 0.97	0.01304 0.014 0.0103 0.01393 0.01673	3.1% 3.42% 2.44% 3.34% 4.11%	0.0% 2.55% -0.43% 0.85% 3.19%
2.5 5 6.06 10 15	Lab Control	5 5 5 5 5 5	0.94 0.916 0.944 0.932 0.91 0.904	0.9038 0.8771 0.9154 0.8933 0.8635	0.9762 0.9549 0.9726 0.9707 0.9565	0.94 0.93 0.95 0.94 0.9	0.9 0.87 0.92 0.89 0.88	0.98 0.95 0.97 0.96 0.97	0.01304 0.014 0.0103 0.01393 0.01673	3.1% 3.42% 2.44% 3.34% 4.11%	0.0% 2.55% -0.43% 0.85% 3.19%
2.5 5 6.06 10 15 Angular (Con	Lab Control	5 5 5 5 5 5 5	0.94 0.916 0.944 0.932 0.91 0.904	0.9038 0.8771 0.9154 0.8933 0.8635 0.8814	0.9762 0.9549 0.9726 0.9707 0.9565 0.9266	0.94 0.93 0.95 0.94 0.9	0.9 0.87 0.92 0.89 0.88 0.88	0.98 0.95 0.97 0.96 0.97 0.93	0.01304 0.014 0.0103 0.01393 0.01673 0.008124	3.1% 3.42% 2.44% 3.34% 4.11% 2.01%	0.0% 2.55% -0.43% 0.85% 3.19% 3.83%
2.5 5 6.06 10 15 Angular (Cor C-%	Lab Control rrected) Transfor Control Type	5 5 5 5 5 5 rmed Summ	0.94 0.916 0.944 0.932 0.91 0.904	0.9038 0.8771 0.9154 0.8933 0.8635 0.8814	0.9762 0.9549 0.9726 0.9707 0.9565 0.9266	0.94 0.93 0.95 0.94 0.9 0.9	0.9 0.87 0.92 0.89 0.88 0.88	0.98 0.95 0.97 0.96 0.97 0.93	0.01304 0.014 0.0103 0.01393 0.01673 0.008124	3.1% 3.42% 2.44% 3.34% 4.11% 2.01%	0.0% 2.55% -0.43% 0.85% 3.19% 3.83%
2.5 5 6.06 10 15 Angular (Cor	Lab Control rrected) Transfor Control Type	5 5 5 5 5 5 med Summ Count	0.94 0.916 0.944 0.932 0.91 0.904 hary Mean 1.33	0.9038 0.8771 0.9154 0.8933 0.8635 0.8814 95% LCL	0.9762 0.9549 0.9726 0.9707 0.9565 0.9266 95% UCL	0.94 0.93 0.95 0.94 0.9 0.9 Median	0.9 0.87 0.92 0.89 0.88 0.88	0.98 0.95 0.97 0.96 0.97 0.93	0.01304 0.014 0.0103 0.01393 0.01673 0.008124 Std Err 0.02944	3.1% 3.42% 2.44% 3.34% 4.11% 2.01% CV% 4.95%	0.0% 2.55% -0.43% 0.85% 3.19% 3.83% %Effect 0.0%
2.5 5 6.06 10 15 Angular (Cor C-% 0 2.5	Lab Control rrected) Transfor Control Type	5 5 5 5 5 5 med Summ Count 5 5	0.94 0.916 0.944 0.932 0.91 0.904 hary Mean 1.33 1.28	0.9038 0.8771 0.9154 0.8933 0.8635 0.8814 95% LCL 1.248 1.211	0.9762 0.9549 0.9726 0.9707 0.9565 0.9266 95% UCL 1.412 1.35	0.94 0.93 0.95 0.94 0.9 0.9 Median 1.323 1.303	0.9 0.87 0.92 0.89 0.88 0.88 Min 1.249 1.202	0.98 0.95 0.97 0.96 0.97 0.93 Max 1.429 1.345	0.01304 0.014 0.0103 0.01393 0.01673 0.008124 Std Err 0.02944 0.02487	3.1% 3.42% 2.44% 3.34% 4.11% 2.01% CV% 4.95% 4.34%	0.0% 2.55% -0.43% 0.85% 3.19% 3.83% %Effect 0.0% 3.72%
2.5 5 6.06 10 15 Angular (Cor C-% 0 2.5 5	Lab Control rrected) Transfor Control Type	5 5 5 5 5 med Summ Count 5 5	0.94 0.916 0.944 0.932 0.91 0.904 mary Mean 1.33 1.28 1.336	0.9038 0.8771 0.9154 0.8933 0.8635 0.8814 95% LCL 1.248 1.211 1.273	0.9762 0.9549 0.9726 0.9707 0.9565 0.9266 95% UCL 1.412 1.35 1.399	0.94 0.93 0.95 0.94 0.9 0.9 Median 1.323 1.303 1.345	0.9 0.87 0.92 0.89 0.88 0.88 Min 1.249 1.202 1.284	0.98 0.95 0.97 0.96 0.97 0.93 Max 1.429 1.345 1.397	0.01304 0.014 0.0103 0.01393 0.01673 0.008124 Std Err 0.02944 0.02487 0.02268	3.1% 3.42% 2.44% 3.34% 4.11% 2.01% CV% 4.95% 4.34% 3.8%	0.0% 2.55% -0.43% 0.85% 3.19% 3.83% %Effect 0.0% 3.72% -0.45%

Report Date:

03 May-17 18:07 (p 2 of 4) 1704-S085 | 02-9246-1285

Report Date: Test Code:

03 May-17 18:07 (p 3 of 4)

1704-S085 | 02-9246-1285

							Test	Code:	1704	4-S085 0.	2-9246-1285
Echinoid Sp	erm Cell Fertiliz	ation Test 1	15C	75	ST				Nautilus	Environ	nental (CA)
Analysis ID:	14-8538-5865		•	tilization Rat		T 0		IS Version		8.7	
Analyzed:	03 May-17 18:				equivalence-			ial Results			
Data Transfo		Zeta	Alt Hyp	Trials	Seed	TST b	PMSD	NOEL	LOEL	TOEL	TU
Angular (Corr	rected) ————————	NA 	C*b < T	NA	NA ————————————————————————————————————	0.75	2.41%	15	>15	NA	6.667
TST-Welch's	t Test										
Control	vs C-%		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision	ι(α:5%)		
Lab Control	2.5*		8.509	1.895	0.063 7	<0.0001	CDF	Non-Sign	ificant Effect		
	5*		10.69	1.895	0.06 7	<0.0001	CDF	Non-Sign	ificant Effect		
	6.06*		8.926	1.895	0.067 7	<0.0001	CDF	Non-Sign	ificant Effect		
	10*		6.882	1.943	0.078 6	0.0002	CDF	Non-Sign	ificant Effect		
	15*		9.92	1.943	0.051 6	<0.0001	CDF	Non-Sign	ificant Effect		
ANOVA Tabl	е			150,000			, tet		***************************************		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
Source	Sum Squ	ıares	Mean Squ	are	DF	F Stat	P-Value	Decision	ι(α:5%)		
Between	0.026467	28	0.0052934	56	5	1.563	0.2085	Non-Sign	ificant Effect		
Error	0.081305	07	0.0033877	11	24						
Total	0.107772	4			29	_					
Distribution	al Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances	Bartlett f	Equality of √	/ariance	2.746	15.09	0.7391	Equal Variances				
Distribution	Shapiro-	Wilk W Nor	mality	0.9673	0.9031	0.4672	Normal Distribution				
Fertilization	Rate Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	0.94	0.9038	0.9762	0.94	0.9	0.98	0.01304	3.1%	0.0%
2.5		5	0.916	0.8771	0.9549	0.93	0.87	0.95	0.014	3.42%	2.55%
5		5	0.944	0.9154	0.9726	0.95	0.92	0.97	0.0103	2.44%	-0.43%
6.06		5	0.932	0.8933	0.9707	0.94	0.89	0.96	0.01393	3.34%	0.85%
10		5	0.91	0.8635	0.9565	0.9	0.88	0.97	0.01673	4.11%	3.19%
15		5	0.904	0.8814	0.9266	0.9	0.88	0.93	0.008124	2.01%	3.83%
Angular (Co	rrected) Transfo	rmed Sumr	nary								
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	1.33	1.248	1.412	1.323	1.249	1.429	0.02944	4.95%	0.0%
2.5		5	1.28	1.211	1.35	1.303	1.202	1.345	0.02487	4.34%	3.72%
						4 0 4 5	1.284	1.397	0.00000		0.450/
5		5	1.336	1.273	1.399	1.345	1.204	1.391	0.02268	3.8%	-0.45%
5 6.06		5 5	1.336 1.312	1.273 1.236	1.399 1.389	1.345	1.233	1.369	0.02268	3.8% 4.69%	-0.45% 1.33%
-											

Report Date:

17 Apr-17 12:47 (p 1 of 1)

Test Code: 1704-3035 02-9246-1285/116E9AE5

Echinoid Sp	erm C	ell Fe	rtiliza	tion Test 15	С		Nautilus Environmental (CA)		
Start Date: End Date: Sample Date	Date: 17 Apr-17			Protoc		centrotus purpuratus R-95/136 (1995) fluent	Sample Code: 65A9CCA6 17 - 0447 Sample Source: IDE Americas, Inc. Sample Station M-001 Unadjusted Dark		
C-%	Code	Rep	Pos	# Counted	# Fertilized		Notes $\hat{\mathcal{O}}$		
			31	100	96	Ro 513/17			
			32	100	95	1			
			33	100					
			34	100	93				
			35	100	92				
			36	100	96				
			37	100	90				
			38	100	97				
			39	100	90				
			40	100	93				
			41	100	94				
			42	100	91				
			43	100	89				
			44	100	93		`		
			45	100	90				
			46	100	94				
			47	100	88		,		
			48	100	90 88				
			49	100	88				
			50	100	95				
			51	100	91				
			52	100	93				
			53	100	95				
			54	100	88				
			55	(00	87				
			56	100	92				
woman's na 'w '			57	100	92				
			58	100	a-1				
			59	100	90				
			60	100	96	V			

09 5 Q4 51317

CETIS Test Data Worksheet

Report Date:

17 Apr-17 12:48 (p 1 of 1) 02-9246-1285/116E9AE5 1704 - 5e95 Test Code:

Echinoid Sperm Cell Fertilization Test 15C							Nautilus Environmental (CA)				
Start Date: End Date: Sample Date	17 A	Apr-17 Apr-17 Apr-17	•		s: Strongyloco ol: EPA/600/R al: Facility Effl		Sample Code: (165A9CCA6 17-0467 Sample Source: IDE Americas, Inc. Sample Station: M-001 Unadjusted 17 all y				
C-%	Code	Rep	Pos	# Counted	# Fertilized		Notes				
0	LC	1	34	100	96	AD	4/17/17				
0	LC	2	46				7				
0	LC	3	48								
0	LC	4	32								
0	LC	5	52								
2.5		1	55	100	93						
2.5		2	40								
2.5		3	50								
2.5		4	37								
2.5		5	44								
5		1	53	100	93						
5		2	57								
5		3	31								
5	i.	4	38								
5		5	56								
6.06		1	43	100	93						
6.06		2	60								
6.06		3	51								
6.06		4	41								
6.06		5	36								
10		1	47								
10		2	35								
10		3	39		1890/						
10		4	58								
10		5	49	100	94						
15		1	59		•						
15		2	54								
15		3	33								
15	-	4	42								
15		5	45	100	94						

QC = RH

@ EG Q18 5/3/17

Marine Chronic Bioassay

Water Quality Measurements

Client :	IDE	Test Species: S. purpuratus
----------	-----	-----------------------------

 Sample ID:
 Daily M-001
 Start Date/Time: 4/17/2017
 4/17/2017
 7 0 3

Sample Log No.: 17- 0467 End Date/Time: 4/17/2017

Dilutions made by: A6080AD Test No: 1704-5085

		Analyst:	A6	
			eadings	
Concentration	DO	pН	Salinity	Temperature
%	(mg/L)	(units)	(ppt)	(°C)
Lab Control	7.9	335 Mars 117/17	33.5	15.2
2.5	8.2	7.90	33.7	15.5
5.0	8.3	7.90	338	15.4
6.06	8.4	7.90	33.8	15.3
10	8.5	7,90	33.7	(S)
15	8.2	7.86	33. S	15.2

Comments:		
QC Check:	EG 5/3/17	Final Review: 5/3/17

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

Marine Chronic Bioassay

Echinoderm Sperm-Cell Fertilization Worksheet

	-										
Client: Sample ID: Test No.:	M-001 1704-50	×85			Start Date/Time: 4/17/2017 / 1703 End Date/Time: 4/17/2017 / 1742 Species: 5 Purplication Animal Source: 74/17/2017 / 1703						
Tech initials: Injection Time:	AD 1625	_ _				Animal Sour Date Collect	- 49				
Sperm Absorbance at 4	00 nm: <u>0,87</u>	(ta	arget range of	f 0.8 - 1.0 for	density of	1x10 ⁶ sperm/r	ml)				
Eggs Counted:	92 103 90 90	(target cou	<u>97,⊋</u> X ints of 80 eggs e for a final der	per vertical pa	ass on Sedg						
Initial density: Final density:		gs/ml gs/ml	- <u>1.0</u> pa	ution factor rt egg stock rts seawater	se	g stock awater	DO ml				
Prepare the embryo stoc existing stock (1 part) ar			dilution facto			lution factor is	s 2.25, use 1	00 ml of			
				Sperm:E	gg Ratio						
Rangefinder Test: ml Sperm Stock ml Seawater	2000:1 50 0.0	1600:1 40 10	1200:1 30 20	800:1 20 30	400:1 10 40	200:1 5.0 45	100:1 2.5 47.5	50:1 1.25 48.75			
Sperm Added (100 µl): Eggs Added (0.5 ml): Test Ended:	Time 1634 1658	<u>Re</u> 	angefinder Ra	itio: Fer	t. Un 1 2 296 8	fert.					
NOTE: Choose a sperm this range, choose the organism health, stage or	ratio closest to	90 percent	unless profe	ween 80 and essional judg	90 percent gment dicta	. If more than tes considera	n one concer ation of othe	ntration is we er factors (vithin (e.g.,		
Definitive Test		Sį	erm:Egg Rat	io Used:	100:	<u> </u>					
Sperm Added (100 µl): Eggs Added (0.5 ml): Test Ended:	Time 1703 1723 1743	Q E	C1 C2 gg Control 1 gg Control 2	Fer QC	t. Un	fert. 3 30					
Comments:											
QC Check:	EG 5/3/1	7				Final Revi	ew: <u> 'なら</u> ,	13/17			

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

Appendix B

Sample Receipt Information

Client: LDE		Tests	Performed	: Urch	iin F	ertilization	Sample Descri	ptions	s:				
Project: Daily M-001		Tes	t ID No.(s)	:_1704	1-508	35 to -50	1960 11 Colorles	5, C	lear	, od	onles	55 1	ight deb
Sample ID:	1) Paily Mool	2)		3		4)	2)						
Log-in No. (17-xxxx):						-	4)					********	And a second community of the
Sample Collection Date & Time:	4/16/17 0800		ACCOMMENT OF THE PARTY OF THE P				-1)			Market State Comments	-		·······
Sample Receipt Date & Time:	4/17/17/228						COC Complete	.2	13	\	N		
Number of Containers & Container Type:	2,42wn.						ood somplete	•	\leftarrow) 			
Approx. Total Volume Received (L):	~61												
Check-in Temp (°C)	20						Filtration? Y	/	N				
Temperature OK? 1	Ŷ N	Y	N	Υ	N	Y N	Pore S			*			
DO (mg/L)	8.2						Organi	sms		or		Debri	s
pH (units)	7.53												
Conductivity (µS/cm)	~												
Salinity (ppt)	34.2						pH Adjustment	17	Y (Ñ	ń			
Alkalinity (mg/L) ²	120						,	1	2		4	5	6
Hardness (mg/L) ^{2, 3}	_						Initial pH:			ΓŤΤ	Ť		
Total Chlorine (mg/L)	40.07						Amount of HCI added:						
Technician Initials	A6						Final pH:						
Freshwater Tests:													
Control/Dilution Water Source: 8:2	Culligan Othe	er:		Alkalinity:		Hardness:	Cl ₂ Adjustment	?	Υ	((n		
Additional Control? Y N	=			Alkalinity:		Hardness:		1	2	3	A	5	6
Marine Tests: Vrchin	Ferilizatio	m					Initial Free Cl _{2:}						
Control/Dilution Water Source: LAB SW	ARTSW Ot	her:		Alkalinity	1: 108	Salinity: 34 04	STS added:						
Additional Control? Y (N)						Salinity:	Final Free Cl ₂ :						
Sample Salted w/ artificial salt? Y N	If yes, target ppt and	source?					Sample Aeratio	n?	Y	7	(N		
Sample salted w/brine? Y N	If yes, target ppt?			_			·	1	2	3	4	5	6
	. , , , ,		•				Initial D.O.			Ť	Ī		
Notes ¹ Temperature for sample must	: be 0-6°C if received >24	4 hours nas	st collection ti	ime			Duration & Rate						
² mg/L as CaCO3, ³ Measu		·					Final D.O.						
<u> </u>			,	7.1000010			i mai b.o.						
Additional Comments							Subsamples For A	ddition	al Chem	nistry P	equired	2 Y/NÎ	_
							NH3		Other		-quii cu	("	ر
							Tech Initial	s					
QC Check: CH 4/17/17								_	·view:	025	13/10	7	
							6- 80	141 ING	4 16 AA.		· ·		

Appendix C

Chain-of-Custody Form

CDP laoratory:	Turn Around Time
Entahlpy Laboratory:	Normal:X
WECK Laboratory:	RUSH (24 hr):
Nautilus:X	3 Days:
AIM:	5 Days:
Other:	??? Days

10			THE RESERVE AND ADDRESS OF THE PROPERTY OF THE		The second section of the second	A CONTRACTOR OF THE PROPERTY O	785_700 Visible 1880	A		Otner:		y to the contract of the contract of	??? Days
8	roject Name: NPDES Daily Tox		Project Manage		C		50) 201-77	777					
sp	pecial instruction: 48 hour comp pec (pretreatment only). Sample	oosite sample collected e collected to fulfill dai	d via autosampler by a ily NPDES requiremen	a series of consecutive gra ts. Sample is to be run un	abs at 1 hr adjusted.	intervals during plant off- Start: 4/14/17 @ 08:00,			ANALYSE	S	4		NOTES:
En	nd: 4/16/17 @ 08:00. KC						ation						
.,			A SECULAR STATE OF THE SECURAR				rtilliz						
			Glass=G Plastic	=P			ic Fe						
		Yes=Y No=N	Acid=A Base=B				Chror						
	Drinki	ng Water=DW Seawa	ter=SW Soil=S Brine=	:B	Pre		hin (
	Sample ID	Date	Time	Sample	Preservative	Container	e Urc						
				Type	tive ?	Туре	Purple Urchin Chronic Fertilizatior						
	M-001 (17- 1456)	4/14-16/17	8:00	48 HR COMP -B	N	2 X 4L CUBIE	X						TDS - 32.06 ppt EC - 49.89 mS/cm
													103 - 32.00 ppt EC - 43.83 m3/cm
											—		
													,
Re	elinquished By:		Date:	Time:		Received By:						Samn	le Condition Upon Receipt:
,	Vernan	~/	4/17/17	1000		Received By:	-1	linlin	Tim	-	Iced	$\overline{}$	
-			4/12/14		\bot			ブリ//	10-12	<u></u> ∟	ICCU	\Box	Ambient or°C

Naux105 D: 17-0467

Appendix D

Reference Toxicant Test Data and Statistical Analyses

CETIS Summary Report

Report Date:

26 Apr-17 09:26 (p 1 of 1)

Test Code:

170417sprt | 13-4494-7236

								rest C	oue.	170	74 17 SPIL 13	3-4494-7236
Echinoid Spe	rm Cell Fertiliza	tion Te	est 15C							Nautilu	s Environn	nental (CA)
Batch ID: Start Date: Ending Date: Duration:	12-9208-3902 17 Apr-17 17:0 17 Apr-17 17:4 40m	3	Test Type: Protocol: Species: Source:	Fertilization EPA/600/R-95/ Strongylocentro Pt. Loma		itus		Analys Diluen Brine: Age:	t: Nati	ural Seawat Applicable	er	
Sample ID: Sample Date: Receive Date: Sample Age:	17 Apr-17	*	Code: Material: Source: Station:	170417sprt Copper chloride Reference Tox Copper Chlorid	icant			Client: Project		rnal		
Comparison S	Summary											
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU	i	Wethod			
14-2520-4213		te	<10	10	NA	4.15%				lultiple Com	parison Tes	st
Point Estimat	e Summary											
Analysis ID	Endpoint		Level	μg/L	95% LCL	95% UCL	TU	i	Viethod			
11-5239-6650		te	EC50	51.69	49.33	54.17			····	Spearman-l		
Test Acceptab	oility							week and the second				
Analysis ID	Endpoint		Attrib	ute	Test Stat	TAC Limi	ts	(Overlap	Decision		
11-5239-6650	Fertilization Ra	te	Contro	ol Resp	0.956	0.7 - NL		\	······································		cceptability	Criteria
14-2520-4213	Fertilization Ra	te		l Resp	0.956	0.7 - NL			res .		cceptability	
14-2520-4213	Fertilization Ra	te	PMSD)	0.04152	NL - 0.25			No		cceptability	
Fertilization R	ate Summary											
C-µg/L	Control Type	Coun	t Mean	95% LCL	95% UCL	Min	Max		Std Err	Std Dev	CV%	%Effect
0	Lab Control	5	0.956	0.9334	0.9786	0.94	0.98	(0.008124	0.01817	1.9%	0.0%
10		5	0.84	0.7961	0.8839	0.79	0.88	C	0.01581	0.03536	4.21%	12.13%
20		5	0.85	0.8027	0.8973	8.0	0.9	C	0.01703	0.03808	4.48%	11.09%
40		5	0.692	0.6148	0.7692	0.64	0.79		0.02782	0.06221	8.99%	27.62%
80		5	0.192	0.1221	0.2619	0.13	0.26	C	0.02518	0.0563	29.32%	79.92%
160		5	0	0	0	0	0	C)	0		100.0%
Fertilization R	ate Detail											
	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5						
0	Lab Control	0.98	0.97	0.94	0.95	0.94						
10		0.88	0.86	0.79	0.82	0.85						
20		0.9	0.83	0.85	0.87	0.8						
40		0.71	0.64	0.79	0.64	0.68						
80		0.14	0.13	0.23	0.2	0.26						
160		0	0	0	0	0						
Fertilization R	ate Binomials											
	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5						
0	Lab Control	98/100	97/100	94/100	95/100	94/100						
10		88/100	0 86/100	79/100	82/100	85/100						
20		90/100	33/100	85/100	87/100	80/100						
40		71/100	0 64/100	79/100	64/100	68/100						
80		14/100	0 13/100	23/100	20/100	26/100						
160		0/100	0/100	0/100	0/100	0/100						

Report Date: Test Code:

26 Apr-17 09:26 (p 1 of 2)

170417sprt | 13-4494-7236

							Test	Code:	170-	417sprt 1	3-4494-7236
Echinoid Spe	erm Cell Fertiliz	ation Te	st 15C						Nautilus	s Environr	nental (CA)
Analysis ID: Analyzed:	14-2520-4213 26 Apr-17 9:2		Endpoint: F Analysis: P	ertilization Ra arametric-Co		itments		IS Version:		.8.7	
Batch ID:	12-9208-3902		Test Type: F	ertilization			Anal				
Start Date:	17 Apr-17 17:0		* -	PA/600/R-95/	136 (1995)		Dilu	-	ural Seawate		
Ending Date:	•			trongylocentre	, ,	itue	Brin			3 1	
Duration:	40m		•	t. Loma	otas parpara	ilus			Applicable		
							Age:				Manager Committee of the Committee of th
Data Transfor		Zeta NA	Alt Hyp C > T	Trials NA	Seed NA		PMSD	NOEL	LOEL	TOEL	TU
			6/1	INA	INA		4.15% 	<10	10	NA ————	
	tiple Compariso	n Test									
Control	vs C-μg/L		Test Sta		****	P-Value	P-Type	Decision	(α:5%)		
Lab Control	10*		5.415	2.305	0.086 8	<0.0001	CDF	Significan	t Effect		
	20*		5.029	2.305	0.086 8	0.0001	CDF	Significan			
	40*		10.14	2.305	0.086 8	<0.0001	CDF	Significan	t Effect		
	80*		24.41	2.305	0.086 8	<0.0001	CDF	Significan	t Effect		
ANOVA Table	e										
Source	Sum Squ	ares	Mean S	quare	DF	F Stat	P-Value	Decision((α:5%)		
Between	2.438415	2.438415 0.6096036			4	174.3	<0.0001	Significan	t Effect		
Error	0.069961	33	0.00349	0.003498067 20				•			
Total	2.508376				24						
Distributional	l Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision(α:1%)			
Variances	Bartlett E	quality o	of Variance	1.201	13.28	0.8779	Equal Var				
Distribution	Shapiro-	Wilk W 1	Normality	0.9603	0.8877	0.4196	Normal Di				
Fertilization F	Rate Summary										
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	0.956	0.9334	0.9786	0.95	0.94	0.98	0.008124	1.9%	0.0%
10		5	0.84	0.7961	0.8839	0.85	0.79	0.88	0.01581	4.21%	12.13%
20		5	0.85	0.8027	0.8973	0.85	0.8	0.9	0.01703	4.48%	11.09%
				0.0440	0.7692	0.68	0.04	0.79	0.02782	8.99%	27.62%
40		5	0.692	0.6148	0.7092	0.00	0.64	0.79	0.02/02	0.5570	21.02/0
		5 5	0.692 0.192	0.1221	0.7692	0.00	0.64	0.79	0.02782	29.32%	79.92%
80	rected) Transfor	5	0.192								
80 Angular (Corr C-μg/L	rected) Transfor Control Type	5	0.192 mmary	0.1221		0.2					
80 Angular (Corr C-μg/L	•	5 med Su	0.192 mmary	0.1221	0.2619	0.2	0.13	0.26	0.02518	29.32%	79.92%
80 Angular (Corr C-μg/L 0	Control Type	5 med Su Count	0.192 mmary : Mean	0.1221 95% LCL	0.2619 95% UCL	0.2	0.13 Min	0.26 Max	0.02518 Std Err	29.32% CV%	79.92% %Effect
80 Angular (Corr С-µg/L 0 10	Control Type	5 med Su Count 5	0.192 mmary : Mean 1.364	0.1221 95% LCL 1.305	0.2619 95% UCL 1.422	0.2 Median 1.345	0.13 Min 1.323	0.26 Max 1.429	0.02518 Std Err 0.02114	29.32% CV% 3.47%	79.92% %Effect 0.0%
C-µg/L	Control Type	5 med Su Count 5 5	0.192 mmary : Mean 1.364 1.161	0.1221 95% LCL 1.305 1.102	95% UCL 1.422 1.22	0.2 Median 1.345 1.173	0.13 Min 1.323 1.095	0.26 Max 1.429 1.217	0.02518 Std Err 0.02114 0.02141	29.32% CV% 3.47% 4.12%	79.92% %Effect 0.0% 14.85%

Analyst: AC QA: 56/3/7

Report Date:

26 Apr-17 09:26 (p 2 of 2)

170417sprt | 13-4494-7236

Report Date:

26 Apr-17 09:26 (p 1 of 1)

Test Code:

170417sprt | 13-4494-7236

Echinoid Spe	rm Cell Fertilization	Test 15C		Nautilus Environmental (CA
Analysis ID:	11-5239-6650	Endpoint:	Fertilization Rate	CETIS Version: CETISv1.8.7 Official Results: Yes
Analyzed:	26 Apr-17 9:26	Analysis:	Trimmed Spearman-Kärber	
Batch ID:	12-9208-3902	Test Type:	Fertilization	Analyst: Diluent: Natural Seawater
Start Date:	17 Apr-17 17:03	Protocol:	EPA/600/R-95/136 (1995)	
Ending Date:	17 Apr-17 17:43	Species:	Strongylocentrotus purpuratus	Brine: Not Applicable Age:
Duration:	40m	Source:	Pt. Loma	

Trimmed Spearman-Kärbe	r Estimates						
Threshold Option	Threshold	Trim	Mu	Sigma	EC50	95% LCL	95% UCL
Control Threshold	0.044	11.61%	1.713	0.01018	51.69	49.33	54.17

Fertilizati	on Rate Summary										
C-µg/L	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Lab Control	5	0.956	0.94	0.98	0.008124	0.01817	1.9%	0.0%	478	500
10		5	0.84	0.79	0.88	0.01581	0.03536	4.21%	12.13%	420	500
20		5	0.85	8.0	0.9	0.01703	0.03808	4.48%	11.09%	425	500
40		5	0.692	0.64	0.79	0.02782	0.06221	8.99%	27.62%	346	500
80		5	0.192	0.13	0.26	0.02518	0.0563	29.32%	79.92%	96	500
160		5	0	0	0	0	0		100.0%	0	500

Echinoid Sperm Cell Fertilization Test 15C

Nautilus Environmental (CA)

Test Type: Fertilization

Protocol: EPA/600/R-95/136 (1995)

Organism: Strongylocentrotus purpuratus (Purpl

Endpoint: Fertilization Rate

Material: Copper chloride

Source: Reference Toxicant-REF

Echinoid Sperm Cell Fertilization Test 15C

Quality Control Data		OV.	40.1070	+25 Warning Limit.	100.1	+3S Action Limit:	122.4
Sigma:	22.28	CV:	40.10%	+2s Warning Limit:	100 1	+3s Action Limit:	122.4
Mean:	55.53	Count:	20	-2s Warning Limit:	10.97	-3s Action Limit:	-11.31

Quan	ty Oon	uoi bat	4								
Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2017	Feb	19	16:00	38.18	-17.35	-0.7789			04-9561-8356	16-1145-1366
2			21	11:42	62.44	6.91	0.3101			15-6576-1294	19-2980-3814
3			23	14:42	23.77	-31.76	-1.425			07-0628-7264	20-4334-6940
4			27	16:05	52.9	-2.631	-0.1181			10-1635-1121	14-4530-4128
5			28	18:00	84.51	28.98	1.301			09-8043-1931	05-2317-8363
6		Mar	1	15:45	99.56	44.03	1.976			17-5791-9592	08-2085-2833
7			2	15:26	53.09	-2.436	-0.1093			20-3729-5626	20-9062-5332
8			8	12:50	43.2	-12.33	-0.5532			10-8438-6969	12-4014-5220
9			10	14:18	28.71	-26.82	-1.204			05-2038-2100	05-9725-9024
10			15	15:10	49.84	-5.694	-0.2556			06-7728-1272	00-9516-8529
11			21	11:03	32.23	-23.3	-1.046			15-4686-0543	08-4903-8267
12			28	15:45	92.34	36.81	1.652			19-7829-0165	07-5461-2916
13			29	11:50	83.41	27.88	1.251			05-8182-1994	00-0525-0185
14			30	16:20	37.46	-18.07	-0.8111			04-2787-9157	21-1957-9518
15		Apr	1	11:49	35.15	-20.38	-0.9149			01-0869-3000	14-7307-9005
16			3	17:15	42.93	-12.6	0.5654			11-7488-2003	08-5368-9216
17			4	12:13	55.13	-0.4028	-0.01808			02-3186-4899	18-3488-7750
18			5	14:33	50.05	-5.479	-0.2459			12-8691-4512	16-6546-2933
19			12	16:30	82.12	26.59	1.193			04-6122-9881	08-0232-5024
20			14	15:34	63.58	8.054	0.3615			06-7326-1133	06-6067-9028
21			17	17:03	51.69	-3.836	-0.1722			13-4494-7236	11-5239-6650

CETIS Test Data Worksheet

Report Date:

17 Apr-17 12:47 (p 1 of 1)

Test Code:

13-4494-7236/170417sprt

Echinoid Sperm Cell Fertilization Test 15C Nautilus Environmental (CA								Nautilus Environmental (CA)
Start Date: 17 Apr-1 End Date: 17 Apr-1 Sample Date: 17 Apr-1		Apr-17	7	Protoc		entrotus purpuratus -95/136 (1995) oride		170417sprt Reference Toxicant Copper Chloride
C-µg/L	Code	Rep	Pos	# Counted	# Fertilized	}	Notes	
			1	100	95	TN 4/19/17		
			2	100	20			
			3	W	85			
			4	100 100	87			
			5	192	0			
			6	192	14			· · · · · · · · · · · · · · · · · · ·
			7	(9)	26			
			8	100	86			
			9	<i>6</i> 0	64			
			10	100	0	₹ ,		
			11	100	O	TN 4/21/17		
			12	(60)	79			
***************************************			13	Col	90			
	-		14	100	88			
			15	p>	79			
	-		16	69	<u>ව</u>			
	-		17	Col	94			
1270			18	100	13			
	-		20	(60)	\$2			
	-		21	60)	80			
			22	DO	97 83			
			23	100				
			24	100 G01	71			
			25	100	23		***************************************	
			26	100	<u>૮ ઝ</u> વર્ષે			
******			27	130	64			
	-		28	100	45,			
			29	100	94		***************************************	
			30	100	68			
			L	100	W B	<u>y</u>		

CETIS Test Data Worksheet

Report Date: Test Code: 17 Apr-17 12:46 (p 1 of 1) 13-4494-7236/170417sprt

Echinoid Sp	erm C	ell Fe	rtiliza	tion Test 150		**************************************		Nautilus Environmental (Ca
Start Date: End Date: Sample Date	17 /	Apr-17 Apr-17 Apr-17	,	Species: Strongylocentrotus purpuratus Protocol: EPA/600/R-95/136 (1995) Material: Copper chloride				170417sprt : Reference Toxicant : Copper Chloride
C-µg/L	Code	Rep	Pos	# Counted	# Fertilized		Notes	
0	LC	1	26	100	94	Ano	4117117	
0	LC	2	21		1		11.,11	
0	LC	3	17					
0	LC	4	1					
0	LC	5	29					
10		1	14					
10		2	8	100	88			
10		3	12	, ,				
10		4	19					
10		5	28					
20		1	13	100	93			
20		2	22	(00				
20		3	3					
20		4	4					
20		5	20					
40		1	23	100	79		*	
40		2	27	100				
40		3	15					
40		4	9					
40		5	30					
80		1	6 ,	100	5			
80		2	18	, 0 -			***************************************	
80		3	25					
80		4	2					
80		5	7					
160		1	11	100	0			
160		2	24	0			<i>√</i>	
160		3	10					
160		4	16					
160		5	5					

OC. PO

Marine Chronic Bioassay

Water Quality Measurements

-			
1	ıe	mr	
\sim			

Internal

160

Test Species: S. purpuratus

Sample ID:

 $CuCl_2$

Start Date/Time: 4/17/2017

Test No:

170417sprt

End Date/Time: 4/17/2017

Dilutions made by: A6 080 AD

High conc. made (µg/L):

Vol. Cu stock added (mL):

Final Volume (mL):

Cu stock concentration (μg/L):

Analyst:

	F)O							
	Initial Readings							
Concentration	DO	pН	Salinity	Temperature				
(μg/L)	(mg/L)	(units)	(ppt)	(°C)				
Lab Control	8.3	7.90	33. S	14.9				
10	8.3	7.85	33.1	15.3				
20	8.2	7.84	38.8	15.4				
40	8.1	7.84	33.1	15.5				
80	8.1	7.86	33,7	15.6				
160	8.1	7.87	33.5	15.6				

Comments:		
OC Check:	AL 4/26/17	Final Review: 65 5/3/17

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

Marine Chronic Bioassay

Echinoderm Sperm-Cell Fertilization Worksheet

Client: Sample ID: Test No.: Tech initials: Injection Time:	Interna Cuclz 170417 AD 1625	Sprt		- - -			ce: <u>PF. 11</u>	11743
Sperm Absorbance at 40	00 nm: <u>0.8</u> 7	(tai	get range of (0.8 - 1.0 for c	density of 4	x10 ⁶ sperm/r	nl)	
Eggs Counted:	92 103 90 90	(target cour	₹ 200 tts of 80 eggs properties of 80 eggs properties for a final density of the formal	per vertical pa	ss on Sedgw			
Initial density: Final density:		gs/ml = gs/ml	- 1.0 part	tion factor t egg stock ts seawater		stock	00 ml	
Prepare the embryo stoc existing stock (1 part) an	_			. For examp	le, if the dilu	ution factor is	s 2.25, use 1	00 ml of
				Sperm:Eg	a Ratio			
Rangefinder Test: ml Sperm Stock ml Seawater	2000:1 50 0.0	1600:1 40 10	1200:1 30 20	800:1 20 30	400:1 10 40	200:1 5.0 45	2.5 47.5	50:1 1.25 48.75
Sperm Added (100 µl): Eggs Added (0.5 ml): Test Ended:	Time 1634 1658	Rai	ngefinder Rati	79	96 84 	ert.		
NOTE: Choose a sperm-to-egg ratio that results in fertilization between 80 and 90 percent. If more than one concentration is within this range, choose the ratio closest to 90 percent unless professional judgment dictates consideration of other factors (e.g., organism health, stage of reproductive season, site conditions).								
Definitive Test		Spo	erm:Egg Ratio	o Used:	100:1	in transcense		
Sperm Added (100 µl): Eggs Added (0.5 ml): Test Ended:	Time 1703 1723 1743	•		Fert. QO Q		ert. 2 3 50 0		e .,
Comments:								
QC Check: Nautilus Environmental. 434	A C 4 25	San Diago				Final Revi	ew: <u>(5 57</u> 3	17

Appendix E

Qualifier Codes

Glossary of Qualifier Codes:

- Q1 Temperatures out of recommended range; corrective action taken and recorded in Test Temperature Correction Log
- Q2 Temperatures out of recommended range; no action taken, test terminated same day
- Q3 Sample aerated prior to initiation or renewal due to dissolved oxygen (D.O.) levels below 6.0 mg/L
- Q4 Test aerated; D.O. levels dropped below 4.0 mg/L
- Q5 Test initiated with aeration due to an anticipated drop in D.O.
- Q6 Airline obstructed or fell out of replicate and replaced; drop in D.O. occurred
- Q7 Salinity out of recommended range
- Q8 Spilled test chamber/ Unable to recover test organism(s)
- Q9 Inadequate sample volume remaining, 50% renewal performed
- Q10 Inadequate sample volume remaining, no renewal performed
- Q11 Sample out of holding time; refer to QA section of report
- Q12 Replicate(s) not initiated; excluded from data analysis
- Q13 Survival counts not recorded due to poor visibility or heavy debris
- Q14 D.O. percent saturation was checked and was ≤ 110%
- Q15 Did not meet minimum test acceptability criteria. Refer to QA section of report.
- Q16 Percent minimum significant difference (PMSD) was <u>below</u> the lower bound limit for acceptability. This indicates that statistics may be over-sensitive in detecting a difference from the control due to low variability in the data set.
- Q17 Percent minimum significant difference (PMSD) was <u>above</u> the upper bound limit for acceptability. This indicates that statistics may be under-sensitive in detecting a difference from the control due to high variability in the data set.
- Q18 Incorrect Entry
- Q19 Illegible Entry
- Q20 Miscalculation
- Q21 Other (provide reason in comments section)
- Q22 Greater than 10% mortality observed upon receipt and/or in holding prior to test initiation.
 Organisms acclimated to test conditions at Nautilus and ultimately deemed fit to use for testing.
- Q23 Test organisms received at a <u>temperature</u> greater than 3°C outside the recommended test temperature range. However, due to age-specific protocol requirements and/or sample holding time constraints, the organisms were used to initiate tests upon the day of arrival. Organisms were acclimated to the appropriate test conditions upon receipt and prior to test initiation.
- Q24 Test organisms received at <u>salinity</u> greater than 3 ppt outside of the recommended test salinity range. However, due to age-specific protocol requirements and/or sample holding time constraints, the organisms were used to initiate tests upon the day of arrival. Organisms were acclimated to the appropriate test conditions upon receipt and prior to test initiation.

Updated: 6/30/15